M

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

SOFTWARE DEFINED RADIO DATALINK
IMPLEMENTATION USING PC-TYPE COMPUTERS

by
Georgios Zafeiropoulos

September 2003

Thesis Advisor: Jovan Lebaric
Second Reader: Curtis Schleher

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2003 Master’s Thesis

4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS

Software Defined Radio Datalink Implementation Using PC-Type

Computers

6. AUTHOR(S) Captain Georgios Zafeiropoulos

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING

ADDRESS(ES) AGENCY REPORT NUMBER
N/A

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

The objective of this thesis was to examine the feasibility of implementation and the performance of
a Software Defined Radio datalink, using a common PC type host computer and a high level programming
language. Dedicated transceivers were used, plugged on the PCI bus of host PCs running Windows 2000.
Most of the functionality was programmed using the Microsoft Visual C++ language. The tasks to be
performed included the channels configuration (number of active channels, center frequencies, sampling
and data rates, choice of the appropriate up and down conversion filters), the management of the data
transfer between the host computer and the transceiver, the baseband data modulation and demodulation,
and the data organization into packets with appropriate headers in order to achieve phase and time
synchronization solely by software. A part of the transceivers’ configuration was achieved using a
configuration utility running in Excel, provided by the manufacturer. Several combinations of M-PSK
modulation schemes, channel numbers and datarates were tested in order to measure the performance
limits of the system and its ability to perform the required tasks in real-time. The received data streams were
further analyzed with the use of Matlab, in order to verify the proper functionality of the communication
scheme.

14. SUBJECT TERMS 15. NUMBER OF
Software Defined Radio, Communications, Datalink, WaveRunner PAGES
190
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

SOFTWARE DEFINED RADIO DATALINK IMPLEMENTATION USING PC-
TYPE COMPUTERS

Georgios Zafeiropoulos
Captain, Hellenic Air force
B.S., Hellenic Air Force Academy, 1990

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
AND MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2003
Author: Georgios Zafeiropoulos
Approved by: Jovan Lebaric

Thesis Advisor

Curtis Schleher
Co-Advisor

John Powers
Chairman, Department of Electrical Engineering

Dan Boger
Chairman, Department of Information Sciences

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The objective of this thesis was to examine the feasibility of
implementation and the performance of a Software Defined Radio datalink, using
a common PC type host computer and a high level programming language.
Dedicated transceivers were used, plugged on the PCI bus of host PCs running
Windows 2000. Most of the functionality was programmed using the Microsoft
Visual C++ language. The tasks to be performed included the channels
configuration (number of active channels, center frequencies, sampling and data
rates, choice of the appropriate up and down conversion filters), the management
of the data transfer between the host computer and the transceiver, the
baseband data modulation and demodulation, and the data organization into
packets with appropriate headers in order to achieve phase and time
synchronization solely by software. A part of the transceivers’ configuration was
achieved using a configuration utility running in Excel, provided by the
manufacturer. Several combinations of M-PSK modulation schemes, channel
numbers and datarates were tested in order to measure the performance limits of
the system and its ability to perform the required tasks in real-time. The received
data streams were further analyzed with the use of Matlab, in order to verify the

proper functionality of the communication scheme.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

R LV I 2 15 16 I [1
A. THE NEED FOR SOFTWARE DEFINED RADIO........ccccciiiiiiiiiiiennes 1
B. DEFINITION - CHARACTERISTICS OF THE SOFTWARE

DEFINED RADIO ..., 2
C. ABOUT THIS THESIS ... 6

[I: THEORY REVIEW 11
A. INTRODUGCTION ... e 11
B. RADIO RECEIVER TOPOLOGIES ..o, 12
C. MULTIRATE SIGNAL PROCESSINGccooiiiiiiieieeceeeeececcee 17

1. DeCimMatioN ... 17

2. Zero-Insertion Interpolation...........ccccoeeiiiiiiiii 19

3. Zero-Insertion and Raised-CoSine...............uevveeeeiiiiiiiiiiiiiinnnnns 20

4. Non-Integer-Rate Conversion ..., 20

5. Sampling Rate Conversion by Stagesccoovviceiiiiiiennnn, 21

6. Cascaded Integrator Comb Filters ..., 22

7. Polyphase Decimation and interpolation............ccccc.ooiiiiis 24

D. DIGITAL GENERATION OF SIGNALS ..., 26
1. Comparison of Direct Digital Synthesis with Analog Signal

SYNENESIS ..o 27

2. Approaches to Direct Digital Synthesis..........cccccoeeieiiiiiiiiinnnnnn. 27

3. Pulse Output Direct Digital Synthesiscccoeeeiiiiiiin. 28

4. Rom Look-Up Table Approachccooeiiiiiiiiiiiiiieeeeeeee, 30

5. Performance Assessment of the DDS Systems....................... 31

E. ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERSION. 32

F. CHOICE OF THE APPROPRIATE HARDWAREcvvvvieeieveieneee. 33

1. Digital Signal Processors (DSP)coooviiiiiiiiiiiieeeeeee 34

2. Field Programmable Gate Arrays (FPGA) ..o 34

3. Implementing DSP Functions in FPGASccccooviiiiiiiiiiiinnnn. 35

4. Using a Combination of DSPs, FPGAs, and ASICs................. 36

G. OBJECT ORIENTED PROGRAMMING (OOP) AND THE SDR 36

1. O PP 37

2. JAVA 38

H. MULTITHREADED PROGRAMMING ..., 39

l. FROMHEREo, 41

[ll: DESCRIPTION OF THE HARDWARE ..., 43
A. INTRODUGCTION ... 43
B. HARDWARE CHARACTERISTICS........cco o, 43
C. TRANSMITTER DATAPATH ... 45

1. Transmitter Data Buffer ..., 46
2. Dual Quad Programmable Upconverter (QPUC)..................... 46

Vii

3. Digital-To-Analog Converter ..., 49

4. Transmitter Front-End.............coooiiiiiii e, 50

D. RECEIVER DATAPATH ... 51
1. Receiver Front-End...........ccoooiiiiiiiiii e 51

2. Analog-To-Digital Converterccccooiiiiiiiie 52

3. Dual Quad Programmable Digital Downconverter (QPDC) 53

4. Receiver Data Bufferccoooiiiiiiiiii e 58

E. 010]\ I 58
F. FROMHEREo, 60
IV: DESCRIPTION OF THE SOFTWARE........ccoiiii 61
A. INTRODUGTION ...t e 61
B. HARDWARE LIBRARY AND DATA TRANSFER MODE 62
C. CHANNELS CONFIGURATIONooviiiiiieeeeeeiieeeeeeeeeeeeeeeee e 63
D. APPLICATION GUI ..o 66
E. APPLICATION ARCHITECTURE. ..., 69
1. ODJECES .. 69

2. ProCedurescoooiiiiiiieiee e 72

F. DATA ORGANIZATION. ... 79
1. Transmitted Data Organization - Modulationcc........ 81

3. Data Demodulationcooiiiiiiiiiiii e 83

G. CHOICE OF THE PROPER FILTERS.......coviiiiieeiiieeieeeeeeeeeeeeeeeeeeeee 85
H. FROMHEREo, 87
V: RESULTS - CONCLUSIONS 89
A. INTRODUGCTION ... e 89
B. TEST BENCH.ot 89
C. OSCILLOSCOPE IMAGESooiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 91
D. DATA WAVEFORMS ANALYSIS ... 94
E. TESTS RESULTS ...ttt 97
VI: FIELDS FOR FURTHER STUDY ..o 101
APPENDIX A: CODE LISTING ...t 103
WAVERADIO . H. .. s 104
WAVERADIO.CPP ... e 104
Y LN X o PP 108
MAINFRM.CPP ... 108
CHILDFRM.H .. e 110
CHILDFRIM.CPP ... 111
CHILDVIEW . H.....oeeieieiieee e easssssssssssnnnnnnnsnnnnnnnnnns 113
CHILDVIEW.CPP ...ttt ssssssssnsnssnnnnnnes 114
COMMSCTRLDLG.H ...t sneennnnnnnnnnnes 115
COMMSCTRLDLG.CPP ... sessenennnee 115
COMMSTAB . H e snnnnnnnnnnnnnnnnnnes 116
COMMSTABA.CPP .. eseannnnnnne 117
(1@ 1Y S 17 = 5 o 123

COMMSTABZ.CPP ... 124

COMMSTABS H ... e 128
COMMSTABSB.CPP ...t 129
GLOBALVARS . H ... e 134
WAVERUNNER . H...... e 135
WAVERUNNERL.CPP ..ottt 136
WAVERUNNERCHANNEL.H....cooii e 146
WAVERUNNERCHANNEL.CPP ...t 146
RXCHANNEL.H .o 146
RXCHANNEL.CPP ... 147
TXCHANNEL.H e 148
TXCHANNEL.CPP ...t 148
WAVERUNNERISR.CPP ..o 150
MODEMOD.CPP.....ooiiiiie e s 160
MEMORY _MAP.H....ooiiiii s 168
PMCRADIOLH ... 178
LIST OF REFERENGCES e 187
INITIAL DISTRIBUTION LIST ...ttt 189

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 1-1.
Figure 2-1.
Figure 2-2.

Figure 2-3.

Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2.14.
Figure 2.15.
Figure 2-16.
Figure 2-17.
Figure 2-18.
Figure 2-19.

Figure 3-1.

Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.

Figure 3-11.
Figure 3-12.

Figure 4-1.
Figure 4-2.
Figure 4-3.

LIST OF FIGURES

A typical Software Defined Radio model (From Ref. 4). 3
TRF Digital Signal Processing Receiver (From Ref. 4)....................... 12
Single Conversion Homodyne Receiver for (a) coherent and (b) non
coherent reception (From Ref. 4). ..., 13
(a) Heterodyne Receiver. (b) Dual conversion Superheterodyne
Receiver. (From Ref. 4). ..o 15

The heterodyne receivers image frequency problem (From Ref. 4). .. 16
Aliased spectrum of an improperly decimated signal. (From Ref. 4). . 17

Signal decimation by a factor of D. (From Ref. 4)..........cooovviiiiiiiinnnnn. 18
Expected spectrum of a decimated signal (From Ref. 4).................... 18
Signal interpolation by a factor of 5. (From Ref. 4).ooviiiiiiinnnne. 19
Combined upsampling and Raised-Cosine filtering. (From Ref. 4)..... 20
Non-integer datarate conversion (From Ref. 3). ..., 21
Decimation realized in 3 stages (From Ref. 3).iiiiiiiiiiiiiiiien, 22
A CIC decimation filter (From Ref. 4)........oo 23
Frequency response of a CIC filter..........cccooviiiiiiiiiiiii e, 24
General structure of a Polyphase Decimator (From Ref. 4)................ 25
General structure of a polyphase interpolator (From Ref. 4). 25
Pulse Output Direct Digital Synthesis (From Ref. 4)..................ooe. 29
ROM LUT Direct Digital Synthesis (From Ref. 4).ccccoooiiiiiiiiinnnnnnn. 30
Wheatley’s procedure (From Ref. 4)...........uuuiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeee 31
DDS spectrum before and after the application of Wheatley’s

method (From Ref. 4). ... 32
WaveRunner 253 PCIl programmable SDR transceiver (From Ref.

) PP 44
WaveRunner 253 Plus detailed block diagram (From Ref. 7)............. 44
WaveRunner 253 Plus Transmitter datapath (From Ref. 7). 45
QPUC implementation (From Ref. 7)., 47
QPUC channel functional diagram (From Ref. 7). ... 47
WaveRunner transmitter front-end (From Ref. 7). ... 50
WaveRunner 253 Receiver Block Diagram (From Ref. 7). 51
WaveRunner 253 QPDC configuration (From Ref. 7)..........ccccccvunnees 53
QPDC Block diagram (From Ref. 7).cooiiiiiiiiieeeeeeeeeee 54

CIC characteristics. (a) Passband rolloff (N =Number of stages,
R =decimation factor, f, =sampling frequency). (b) 5" order

(N =5) CIC filter response (From Ref. 8)........coooviriiiiiiiiiiii, 56
Frequency response of the built-in halfband filters (From Ref. 8)....... 56
Composite filter example (CIC + FIR) (From Ref. 7).ooovvvvineeeen. 57
Main screen of the WaveFormer configuration Tool........................... 64
Reception channel configuration screen............ccccvvviiieeiiiiiieeiiiinnee, 65
Configuration of one of the filters of the DDC FIR engine................... 65

Xi

Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.

Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.

Figure 5-10.

Figure 5-11.

Memory organization for the transmission channels. 66
Communications Control Panel main page.cccccoeeeeeeiiiiiiiiinnnnn.. 67
Communications Control Panel Rx channels configuration space. 68
Communications Control Panel Tx channels configuration space...... 68
(a) Hardware initialization procedure. (b) Hardware configuration

10T e=To LU 4 > 73
(a) Interrupt Service Routine. (b) Main communications thread. 76
(@) Tx thread. (b) Rxthread..........cccoominiiiiiiiii e, 79
Autocorrelation properties of the 13 bit Barker code. 82
Signal demodulation ProCess.cceeiiiieiiiiiiiiiiiie e 83
Frequency response of the transmitter shaping filter.......................... 86
Frequency response of the receiver decimation filters. 86
Test bench used for the tests of the code............coooviiiiiiiiiiis 90
Onetone at4d MHz.oeoiiiiiiie e 91
Fourtonesat4,8,12and 16 MHz.coomniiiiii e 92
Eight tones at 4,8,12,16,20,24,28,32 and 36 MHz.cccc.. 92
One QPSK channel at S5 MHz...........ccoooviiiiiiiii e 93
Two QPSK channels at 10 and 15 MHz.ccooooiiiiiiiiiiieeeee, 93
Four QPSK channels at 10, 15, 20 and 25 MHz...........cccoeeeiriiiiiinnnnn. 94
Transmitted baseband waveform.cccccoceeiiiiiie 95
Received Baseband Signal Waveform, before phase difference

(o70] g p] o1=T 0 1S 7= 1 o] o 1A 96
Received Baseband Signal Waveform, after phase difference

(o7] g p] o1=T 0 1S 7= 1 To] o 1A 97
Cross correlation between the received baseband waveform after

phase correction, and the Barker code...........ccccooooviiiiiiiiiiiiiieieien. 98

Xii

Table 2-1.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.

LIST OF TABLES

Comparison of Direct Digital Synthesis with Analog Signal Synthesis.... 28
Key performance parameters of the QPUCScccooiiiiiiiiiiiici 47
DAC performance parameters..........ccoeeveevuieeeiiiiieeeeeiii e 50
Transmitter main parameters...........ooooo i 50
RF-Front-end key parameters...........cooo o 52
Key performance parameters of the QPDCScooiiiiiiiiiiiiiic. 54
WaveRunner class description.coouoiiiiii i 70
WaveRunnerChannel class description. ..., 71
RxChannel class description..............coeiiiiiiiiiiiiiiie e 71
TxChannel class descCription.ccoooeiiiiiiiiiiie e 72
Composition of a transmitted symbols packet...............ccccvvvviiiiiiinnnen. 81

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

The preparation of the thesis is probably the most important task of the
student during his two years stay at the Naval Postgraduate School. It is this task
which demands from him to combine several of his skills and the knowledge he
has acquired by his classes at the school. It also tests his research and
development abilities since many times the field he is searching has not been
previously developed by anyone else and he is called to proceed one step ahead
of wherever everybody else has gone up to now. This is a task which may be

quite difficult sometimes and require tremendous effort.

The field of communications has always fascinated me. From the first
moment | engaged myself with this subject, | felt really excited. This theme
required from me to combine the previous knowledge | had acquired in the fields
of communications, digital signal processing and microprocessor programming. It

was also a good opportunity to test and improve my programming skills.

Despite the numerous hours of frustration in the lab, when nothing
seemed to be working properly due to a wrong bit written in a wrong register,
when finally things were tuned and the spectrum analyzer showed the expected
signal waveforms, the satisfaction | felt was indescribable. In fact | feel a little
sorry now that this project has almost come to an end and | have to separate

from my bench in a few days. But, that is life!

| think that the first persons that | must thank are my parents. My current
level of success and welfare greatly depends on the endless years of support
that they gave me in my childhood, putting themselves in a second level of
importance compared to me, the solid rules they have taught me to live with and
their love that has always given me the strength to carry on. | just wish they could

be present at my graduation!

XV

Then | would like to thank my professors at the Naval Postgraduate
School for their patience to share a bit of their wisdom with us. Undoubtedly,
none of the work | performed at this thesis would have become possible, without
the solid theoretical background that they provided.

A great portion of my thanks must be directed to my thesis supervisor,
Professor Jovan Lebaric for his endless support and the valuable advice that

helped me overcome a lot of the seemingly unsolvable problems.

| also need to thank the second advisor of my thesis, Professor Curtis
Schleher, who very patiently looked at this document and suggested useful

changes.

The Hellenic Air Force also deserves my thanks, because it provided me
with a state of welfare here in Monterey, making it possible for me to devote my

time undistracted to my studies.

Last but not least, | think that | owe my success largely to my wife Tina,
the companion of my life for the last few years, who helped me in numerous
instances overcome the moments of frustration | felt during my study here at the
NPGS when the problems seemed unsolvable, and uncomplainingly endured my

endless hours in my study and the school lab.

| hope that you will find the reading of my thesis interesting and that it will

give you a fairly good idea of the work | have performed.

XVi

LIST OF ACRONYMS AND/OR ABBREVIATIONS

ADC, A/D
AM

AGC
ASIC
BPSK
CiC

DAC, D/A
DDS
DSP
EPROM
EEPROM
FCE

FFT
FIFO

FIR

FM
FPGA
GHz

GUI

IF

ISI

KHz

Ksps
LNA

LPF

PCM

: Analog to Digital Converter

: Amplitude Modulation

: Automatic Gain Control

: Application Specific Integrated Circuit
: Binary Phase Shift Keying

: Cascaded Interpolation Comb filter

: Digital to Analog Converter

: Direct Digital Synthesis

: Digital Signal Processor

: Erasable Programmable Read Only Memory
: Electrically Erasable Programmable Read Only Memory
: Filter Compute Engine

: Fast Fourier Transform

: First In First Out

: Finite Impulse Response

: Frequency Modulation

: Field Programmable Gate Array

: Gigahertz

: Graphical User Interface

: Intermediate Frequency

. Intersymbol Interference

: Kilohertz

: Kilosamples per second

: Low Noise Amplifier

: Low Pass Filter

: Pulse Coded Modulation

XVii

PSK
QAM
QDDC
QDUP
QPSK
RAM
ROM
LNA
LUT
MHz
Msps
NCO
OOP
PLD
RF

Rx
SDR
Tx

: Phase Shift Keying

: Qadrature Amplitude Modulation
: Quadrature Digital Down Converter
: Quadrature Digital Up Converter
: Quadrature Phase Shift Keying

: Random Access Memory

: Read Only Memory

: Low Noise Amplifier

: Look-Up Table

: Megahertz

: Megasamples per second

: Numerically Controlled Oscillator
: Object Oriented Programming

: Programmable Logic Device

: Radio Frequency

: Reception

: Software Defined Radio

: Transmission

XViii

I: INTRODUCTION

A. THE NEED FOR SOFTWARE DEFINED RADIO

Since early 1980 an exponential increase of cellular mobile systems has
been observed, which has produced, all over the world, the definition of a
plethora of analog and digital standards. In the current years the industrial
competition between Asia, Europe, and America promises a very difficult path
towards the definition of a unique standard for future mobile systems, although

market analyses underline the trading benefits of a common worldwide standard.

Existing technologies for voice, video, and data use different packet
structures, data types, and signal processing techniques. Integrated services
can be obtained with either a single device capable of delivering various services
or with a radio that can communicate with devices providing complementary
services. The supporting technologies and networks that the radio might have to
use can vary with the physical location of the user. To successfully communicate
with different systems, the radio has to communicate and decode the signals of
devices using different air-interfaces. Furthermore, to manage changes in
networking protocols, services, and environments, mobile devices supporting
reconfigurable hardware also need to seamlessly support multiple protocols,
such as IP (Internet Protocol) and MEXE (Mobile Execution Environment). Such
radios can be implemented efficiently using software radio architectures in which
the radio reconfigures itself based on the system it will be interfacing with, and

the functionalities it will be supporting.

Most radio receivers and transmitters today are similar to those used
decades ago. They consist of dedicated analog circuits for filtering, tuning and
demodulating/modulating a specific type of waveform. To make radio systems
more flexible, a software-defined radio is currently being developed for both

communication and broadcast applications. A software - defined radio is a device
1

which accommodates a variety of receiver/transmitter programs all on a single
hardware platform. The programs on the receiver side perform band pass
filtering, automatic gain control, frequency translation, low-pass filtering, and
demodulation of the desired signal, and similarly on a transmitter side.
Maximizing the number of functions handled digitally, allows the radio to take

advantage of the flexibility of the digital signal processing circuit.

B. DEFINITION - CHARACTERISTICS OF THE SOFTWARE DEFINED
RADIO

The term Software Defined Radio (SDR) was coined by Joe Mitola in
1991 (Ref. 4) to refer to the class of reprogrammable or reconfigurable radios. In
other words, the same piece of hardware can perform different functions at
different times. The SDR Forum defines the ultimate software radio (USR) as a
radio that accepts fully programmable traffic and control information and supports
a broad range of frequencies, air-interfaces, and applications software. The user
can switch from one air-interface format to another in milliseconds, use the
Global Positioning System (GPS) for location, store money using smart card
technology, or watch a local broadcast station or receive a satellite transmission.
Although the exact definition of software radio is a bit controversial, however, a
good working definition is: a radio that is substantially defined in software and
whose physical layer behavior can be significantly altered through changes to its

software.

A typical software defined radio architecture is shown in Figure 1-1.
Although a thorough description of the several modules of the platform will be
given later on, for the time being let us emphasize the fact of the early signal
digitization just after the RF frontend and its subsequent treatment in the discrete

domain.

Smart
Antenna

IF Processing Output
»
ADC Channelization . ’
Flexible and S(f]war?h Hallzrdware
o i - Algorithms -FPGAs
RF : Séimple Bate - Middleware -DSPs
Hardware ! onversion CORBA el Inpet
_ ‘_ - Virtual Radio Machine ¢
4 ‘ A E

Control

Figure 1-1. A typical Software Defined Radio model (From Ref. 4).

Software radios are emerging in commercial and military infrastructure.
This growth is motivated by the numerous advantages of software radios such

as.

Ease of design — It is possible to design many different radio products
using a common RF front-end with the desired frequency and bandwidth in
conjunction with different signal processing software. Thus, it frees the engineer

from much of the iteration associated with analog hardware design.

Ease of manufacture — Given the same input in two digital processors
and running the same software, they will produce identical outputs. Thus, the
move to digital hardware reduces the costs associated with manufacturing and

testing the radios.

Multimode operation — A software radio can change modes by simply

loading appropriate software into the memory.

Use of advanced signal processing techniques — The availability of
high speed signal processing on board the radio allows implementation of new

receiver structures and signal processing techniques.

Fewer discrete components — A single high-speed processor may be
able to implement many traditional radio functions reducing the number of

required components and decreasing the size and cost of radio.

Flexibility to incorporate additional functionality — Software radios
may be modified in the field to correct unforeseen problems or upgrade the radio.
The factors that are expected to push a much wider acceptance of

software radio are the following five:

Multifunctionality — Software radio reconfiguration capability can support

an almost infinite variety of service capabilities in a system.

Global mobility — The ability of the software radio to operate with all the

communication standards in different geographical regions of the world.

Compactness and power efficiency — The software radio approach
results in a compact and, in some cases, a power-efficient design as the number

of systems increases.

Ease of manufacture — In general, digitization of the signal early in the
receiver chain can result in a design that incorporates significantly fewer parts,

meaning a reduced inventory for the manufacturer.

Ease of upgrades — As new devices are integrated into existing
infrastructures, software radio allows the new devices to interface seamlessly,

from the air-interface all the way to the application, with the legacy network.

Software radios derive their benefits from their flexibility, complete and
easy reconfigurability, and scalability. It is important to ensure that these
characteristics are present in the final product. A generic design procedure for

software radios follows and demonstrates the interaction between the various

4

subsystems of the radio design. The following steps focus on the details of these

design procedures.

Step 1: Systems engineering — Understanding the constraints and
requirements of the communication link and the network protocol allows the
allocation of sufficient resources to establish the service given the system’s
constraints and requirements. In an ideal software radio with the ability to
change a number of system parameters in real-time, optimizing an active

communications session is a major challenge.

Step 2: RF chain planning — The ideal RF chain for the software radio
should incorporate simultaneous flexibility in selection of power gain, bandwidth,
center frequency, sensitivity, and dynamic range. However, achieving strict

flexibility is impractical and trade-offs must be made.

Step 3: Analog-to-digital and digital-to-analog conversion selection
— Analog-to-digital and digital-to-analog conversion for the ideal software radio is
difficult to achieve and, in practice, the selection requires trading power
consumption, dynamic range, and bandwidth (sample rate). Analog-to-digital
conversion selection and vice versa is closely tied to the RF requirements for

dynamic range and frequency translation.

Step 4: Software architecture selection - The software architecture is
an important consideration to ensure maintainability, expandability, compatibility,
and scalability for the software radio. ldeally, the architecture should allow for
the hardware independence through the appropriate use of middleware, which
serves as an interface between applications-oriented software and the hardware
layer. The software needs to be aware of the capabilities of the hardware (both
DSP and RF hardware) at both ends of the communications link to ensure

compatibility and to make maximum use of the hardware resources.

Step 5: Digital signal processing hardware architecture selection -
The core digital signal processing hardware can be implemented through
microprocessors, FP-Gas, and/or ASICs. The selection of the core computing
elements depends on the algorithms and their computational and throughput
requirements. In practice, a software radio will use all three core computing
elements, yet the dividing line between the implementation choices for a specific

function depends on the particular application being supported.

Step 6: Radio validation - This step is perhaps the most difficult. It is
essential to ensure not only that the communicating units operate correctly, but
also that a glitch does not cause system-level failures. Interference caused by a
software radio mobile unit to adjacent bands is an example of how a software
radio could cause a system-level failure, and this is of great concern to
government regulators. Given the many variable parameters for the software
radio and the desire for an open and varied source of software modules, it is very

difficult to ensure a fail-proof system.

C. ABOUT THIS THESIS

The obijective of this thesis is to exploit the potential (and the performance)
of implementing a software defined radio using standard PC-type computers.
Lately, the advances in semiconductor technology have boosted the performance
of computers, increasing the processors clock rates to the order of several GHz,
while all the critical links needed in order to achieve fast and reliable data
transfers (memory, hard disks, /O buses etc) are now much more optimized and
faster than some years ago. Moreover, the internal architecture of the newest
generation of processors (like Pentium 4 at 3.06 GHz) make them ideal for multi
threaded applications, which is a key fact in designing multi-channel applications
for the SDR platform.

The above facts have made us consider quite feasible the implementation
of a SDR datalink using dedicated hardware hosted in a commercial PC, with all
its functionality programmed in a high level programming language. In order to
achieve the above goal, we used two WaveRunner 253 SDR transceivers,
produced by Red-River Inc, Richardson TX. The main characteristics of the

above cards are:
» Total transmission/reception bandwidth: 3 — 40 MHz.

 Up to 8 fully configurable and programmable transmission/reception

channels of up to 3.5 Mbps data rate.

* Possibility to combine individual channels in polyphase filters

implementations

» Standard PCI form factor, supporting 32- and 64-bit PCI buses

All the programming was done using Microsoft Visual C++ V.7, which is a
part of the Microsoft Visual Studio NET programming suite. The channels were

configured using a dedicated configuration tool, provided by the manufacturer.

It is the implementation of this effort that this thesis will try to depict. In
order to introduce the reader to the theory behind the implementation and make
him understand the steps of our effort, the next chapters of this thesis cover the

following material:

Chapter Il covers briefly all the theory required to understand the
functionality of a SDR transceiver. The subjects that are covered include digital
signal synthesis, multirate digital signal processing, analog-to-digital and digital-
to-analog conversion features and software requirements and specifications.
Other subjects such as smart antenna design for SDR, the role of a SDR as an
integral part of a radio network and the systems engineering approach to the

SDR design, are far beyond the scope of this thesis and will not be covered.

Chapter Il presents the architecture of the hardware that was used. The
data paths of the transmitter and the receiver are briefly described. More
attention is given to the Digital Up Conversion (DUC) and the Digital Down
Conversion (DDC) chips which are the “heart” of the devices and their operation
ensures the correct functionality of the transceivers. Also, the method of data
exchange between the host computer and the card buffer memory is explained.
This operation is quite significant, since it was the main focus of our

programming efforts described in the next chapter.

Chapter IV is divided in 2 parts: The first part will portray the configuration
of the individual channels, using the dedicated configuration tool. The second
part explains the structure of our program, the main entities, the methods of
achieving specific results on the cards and the methods of interaction between
the several threads of the application, depending on the number of active
transmission — reception channels. The programming of hardware is a very
elaborate process, with hidden dangers in every step of it, which sometimes
cannot be easily identified. Also, a thorough knowledge of the hardware
functionality is required, since sometimes the most unpredictable things can

happen by setting even one inappropriate value in a register.

Chapter V outlines the results of our effort. Although the nature of this
thesis is not inherently theoretical, we dare say that according to our knowledge it
is the first time that a radio link has been implemented on campus using standard
commercial “office” computers and a high level commercial language. So, it will

be quite interesting to discover the potential of this system.

The sixth and final chapter presents the conclusions and the areas for
further research. The potential and capabilities of the hardware we used are
indeed very large. Given the time restrictions of this thesis, only a small part of
these capabilities has been exploited. We just proved that this system can be

built and that it has an acceptable performance. The real magic of this platform

8

lies on the flexible and adaptive use of its resources: optimum usage of the

available spectrum and automatic reconfigurability are only some of its potentials.

Last but not least, it is the author’ s opinion that the control of hardware
functionality through software is one of the most interesting things that an
electrical engineer can do today. It requires a lot of skills and knowledge in many
different areas such as software design, communications and signal processing.
It is only the successful “marriage” of these skills that will lead to successful
results. The effort of the last months and the pleasure of looking at the results of
the several trials have given the author the kind of pleasure that only those who
face electrical engineering in general and communications more specifically, not

only as a profession, but also as a hobby, can understand.

THIS PAGE INTENTIONALLY LEFT BLANK

10

Il: THEORY REVIEW

A. INTRODUCTION

The architecture of the software radio receiver is quite different from the

classical receiver architectures, with the heterodyne receiver being the most

dominant one.

The thorough understanding of the principles of operation of a software

radio platform requires good knowledge of several technical fields. A

representative but not exhausting list of these fields is:

The conversion of the signal from the analog to the digital domain has
moved just before (for the transmitter), or just after (for the receiver)
the RF frontend, creating new requirements for faster digital-to-analog
or analog-to-digital converters, operating at higher frequencies with

acceptable resolution.

All the treatment of the signal, such as channelization or up and down
conversion, is done in the digital domain using the principles of
multirate signal processing. However, some or all of the filters used
must also satisfy requirements from the communications field (such as

the Nyquist property).

The signals required to feed digital mixers in order to generate useful
waveforms are generated entirely in the digital domain as well. There
are several methods to do that, each with its advantages and

disadvantages.

Finally, the software that is used to program the functionality of the
platform, must posses certain properties in terms of robustness,

performance and ability to control the hardware.

11

The purpose of this chapter is not to analyze exhaustively but rather to
highlight the above aspects and provide a brief description of the underlying

principles.
B. RADIO RECEIVER TOPOLOGIES

The Tuned Radio Frequency (TRF) receiver, shown in Figure 2-1,
consists of an antenna connected to an RF bandpass filter (BPF). The BPF
selects the signal and the low-noise amplifier (LNA) with the automatic gain
control (AGC) raises the signal level for compatibility with the analog-to-digital
converter (ADC). This BPF bandwidth relative to the carrier frequency can be

quite narrow, while in absolute bandwidth, it may be quite broad.

Output

L— | BPE —P|LNA >—P| agc M ADC —>

RX Filter

Figure 2-1. TRF Digital Signal Processing Receiver (From Ref. 4).

The primary difficulty in creating a practical TRF receiver is the limitation
of the ADC, which must handle high-frequency signals. In addition, given the
bandwidth and roll-off limitations of the RF filter, the sampling rate of the ADC
must be very high to avoid significant aliasing. High power consumption is
inevitable with high sampling rate conversion. Achieving this sampling
characteristic is difficult, expensive, and power-intensive, and extreme demands
are made of the tunable RF filter to remove interference signals that consume the
dynamic range of the ADC. Non-idealities of the ADC, such as jitter and finite
aperture size, lead to distortion of the signal. The AGC must adjust its gain to

accommodate varying signal levels to utilize the full range of the ADC without
12

overloading it. However, the especially high gain required for a single-stage AGC
in this application may be difficult to control. Nevertheless, the advantage of this

approach is the minimal number of analog parts required.

A very popular topology for low-power applications is the single
conversion receiver (also known as homodyne, direct conversion, or zero IF
receiver). This receiver architecture is shown in Figure 2-2. After signal filtering,
amplification and gain control, a single mixing stage converts the signal to
baseband or near baseband coherently (Figure 2-2a) or incoherently (Figure 2-
2b).

Baseband
Digital

Output
L——p | BPF BPF | AGC LPF » ADC —»
RX Fitter RX Filter

LO

(@)

|
_,®__> LPE | ADC —p

: : Baseband
Digital
E BPF Lo BPF b AGC | LO

Output

RX Filter)
RX Filter 90°

—.®—> LPF ADC —»
Q

Figure 2-2. Single Conversion Homodyne Receiver for (a) coherent and (b) non

(b)

coherent reception (From Ref. 4).

13

In the case of a phase or frequency modulated signal, | and Q
downconversion is required since the upper and lower sidebands of these signals
contain different information and the sidebands would overlap for a real
downconversion. Mixers tend to have high power consumption and, since only
one mixer stage (possibly | and Q) is used in the single conversion receiver, the
receiver potentially offers good power consumption characteristics. Typically,

improved power consumption at the mixer can be traded for dynamic range.

In some cases, rather than directly downconverting the signal to
baseband, it may be more convenient to downconvert to some low intermediate
frequency at which the signal may be digitized and downconverted by
subsequent digital signal processing operations. A more complex LPF with
better roll-off characteristics can help reduce out-of-band interference and thus
lessen the dynamic range requirement of the ADC, but it could also allow more
noise to enter the system (less sensitivity), resulting in non-linear distortion

products from the filter.

The most common RF front-end for radios is the heterodyne receiver.
This receiver, shown in Figure 2-3, is commonly used in analog radios. A
heterodyne receiver works by frequency translating the incoming signal to an IF
that is fixed and independent of the desired signal’s center frequency. When this
IF frequency is lower than the center frequency of the received signal’s carrier
frequency and higher than the bandwidth of the desired signal, the receiver is
called a superheterodyne receiver. The desired signal is now frequency-
translated to a fixed IF can be more easily filtered, amplified, and demodulated.
Plenty of good quality RF components are available for standard IF frequencies.
Often a superheterodyne receiver involves using two stages of downconversion.
Such a dual-conversion receiver has the advantage of relaxed filtering
requirements. Because the filtering occurs in stages, the filtering requirements at
each stage can be more relaxed than in a single-conversion receiver. That is, by

lowering the center frequency of the signal using the first stage of

14

downconversion, the filter quality factor can also be relaxed because the ratio of

center frequency to filter bandwidth is reduced.

‘ IF Binary
Output
BPF _, BPF BPF |+ AGC | ADC |mp
RX Filter Image Filter Image IF Filter

IFLO

()

Digital

Qutput

BPF _, BPF BPF | AGC LPF AGC i ADC |=ip
RX Filter . _Image Filter Image IF Filter mage IF Filter

IFLO1 IFLO2

()

Figure 2-3. (a) Heterodyne Receiver. (b) Dual conversion Superheterodyne

Receiver. (From Ref. 4).

At each mixer stage, not only is the signal downconverted, but also a
portion of the band at w,, the image frequency, is upconverted, which places it on
top of the frequency translated desired signal. This problem is illustrated in
Figure 2-4. For instance, a 68-MHz LO (w_o) will downconvert the desired signal
by 68 MHz , but the adjacent band, located 136 MHz below the desire signal, will
be upconverted to the same frequency range (wg, the intermediate frequency) in
which the desired signal now lies. To mitigate this self-induced interference, an
image filter precedes the mixer to suppress the low-frequency band that might
interfere with the desired signal after the mixing operation. Designing the image
filter becomes especially challenging if the band of potential interference is
heavily occupied with high-power signals. In general, trade-offs exist in the
selection of the IF frequency, the image filter, and the post-mixer filter.

15

4 Amplitude

Desired

/ Signal

Adjacent Channel
, m Interference m
-~

-o _—(:(Ij l, ®
i
4 Amplitude o
4 Desired Signal
Adjacent C%annel / Downconverted
Interference Upconverted / Desired Signal
by the Mixer / Conupted by

/ Interference

M

68 - 68 =~ - o;+68=w,-68 md.!_sg ®
MHz

Figure 2-4. The heterodyne receivers image frequency problem (From Ref. 4).

The TRF receiver is better suited for a software radio that supports
multiple air-interface modes and multiple bands than the single conversion
receiver and particularly better than the heterodyne receiver because the filter
requirements for the IF stages make it difficult to support the multiple bandwidths
that might be required of a multimode receiver. Retuning a receiver can result in
a complex interaction of multiple components comprising the RF chain. The
simpler the RF chain, the more predictable its response will be after retuning.
The choice of a single or double conversion receiver depends on a number of
factors including channel spacing, frequency plan, spurious response, and total
gain. In general, the smaller the channel spacing, the more attractive the double
conversion receiver becomes because of its ability to narrowly filter the desired

signal.

16

C. MULTIRATE SIGNAL PROCESSING

The conversion of a data stream’s sample rate is an important part
of digital signal processing. A data stream can be downsampled to a lower
sampling rate or upsampled to a higher sampling rate, with the processes known
as decimation and interpolation. Often, a non-integer data rate conversion is
required and this conversion must be performed in one or multiple stages. These

processes are the subject of the following paragraphs.
1. Decimation

Decimation is the process by which high-frequency information is
eliminated from a signal to reduce the sampling frequency without resulting in
aliasing. A sampled signal repeats its spectrum every 21 radians/sec. |If

decimation without filtering were performed, aliasing would occur (Figure 2-5).

| xtww]

2n -n 0 b4 o2n Wy

.| Aliasing

Figure 2-5. Aliased spectrum of an improperly decimated signal. (From Ref. 4).

A block diagram of the decimation process is shown in Figure 2-6, where
the operation is composed of lowpass filtering followed by downsampling. The

downsampler picks a subset of the samples that are passed through the lowpass

17

filter (LPF). The LPF used is designed to avoid aliasing and has a cutoff of /D,
the point that allows the non-aliased part of the signal to pass. The end result of

the decimation procedure is the content of the original signal below /D, but it is

sampled at a lower rate. Figure 2-7 shows the expected spectrum of the

decimated signal.

x(n) v(n) y(m)
h(n) _ Dowisgmpler
F, = i F. = &
T, D

Figure 2-6. Signal decimation by a factor of D. (From Ref. 4).

V(o)
- - [] L] L] ;Dy
on -m 0 r op Normalized

Frequency
Figure 2-7. Expected spectrum of a decimated signal (From Ref. 4).

The frequency domain representation of the decimated signal is given by

the following equation:
Y(wy):—X(_yj w,|<. (2.1)

Decimation filters out the information in the original signal above /D

(with respect to the original sample rate). A lowpass direct mapping is possible

from w, to w, and vice versa; this relationship is best described as the spectrum

spanned by X (w,),0<sw, <m/D, is also spanned by Y (w,), 0<w, <77.

18

2. Zero-Insertion Interpolation

Upsampling is the process to increase the number of points per unit time
used to describe a signal. When upsampling is employed, no new information is
added to the signal. The process of upsampling decreases the time between
samples of a signal. This process can be used for matching sampling rates
between two systems or as the last step before the digital-to-analog converter

(DAC) to help relax the requirements for the reconstruction filter.

In zero — insertion interpolation, zeros are inserted between samples of a
signal, generating a new one. This new one, is then lowpass filtered, yielding an

upsampled version of the original (Figure 2-8).

| | -
x(n) Insert /-1 Zeros | (M)) y(m)
FIR LPF

Figure 2-8. Signal interpolation by a factor of 5. (From Ref. 4).

The equation that describes the above procedure is the following:
1
Vo) :YX(ny) . (2.2)

Note that the 1// factor is included to model the reduction in power (in the

normalized scale) resulting from inserting / —1 zeros. The above equation shows
a contraction of the spectrum; a copy of the spectrum of the original signal is

generated every 217/ radians/sec instead of every 27 .

19

3. Zero-Insertion and Raised-Cosine

To minimize inter-symbol interference (ISl), pulse shaping is important. In
order to achieve this, a Nyquist filter, such as a raised-cosine pulse shaping filter,
can be used. For example, if the upsampling of a pulse code modulation (PCM)
signal is to be performed at the transmitter, the upsampling and raised-cosine

filtering can be combined to simplify the overall design.

This implementation is performed by using the zero-insertion interpolation
method described earlier but with a raised-cosine filter combined with the

lowpass interpolation filter as shown in Figure 2-9.

Can Be Combined
Pulses of Data , o ~— s
T T ' Raised Raised
- *I | LPF || Cosine |, Cosine
¢ Filter Pulses
- :

Upsampling to Increase
Sample Rate of Pulses

Figure 2-9. Combined upsampling and Raised-Cosine filtering. (From Ref. 4).
4, Non-Integer-Rate Conversion

Non-integer-rate conversions are achievable through the use of cascaded

interpolations/decimations such that a total rate change of //D is achieved.

Figure 2-10 shows a block diagram of the implementation of a non-
integer-rate conversion. After interpolation by a factor of /, the signal is filtered by
a LPF having a cutoff frequency of m/D and subsequently it is decimated by a

factor of D. So, the overall rate conversion is I/D.

20

x(n) Upsampler v(k) Lowpass w(l) Downsampler | Y(7)

GEE—— Iy filter - D =

Rate = F ()

I
Rate = —F, = F
ale Dx y

Rate = IF, = F,

Figure 2-10. Non-integer datarate conversion (From Ref. 3).

The following equation describes the above procedure mathematically:

Y(w,) :{éx(éwyj} w,|< min(%,%) . (2.3)

5. Sampling Rate Conversion by Stages

The decimator and interpolator discussed so far are of a single-stage
structure. When large changes in sampling rate are required, multiple stages of
sample rate conversion are found to be more computationally efficient. Most
practical systems employ a multi-stage structure, resulting in a considerable
relaxation in the specifications of anti-aliasing (decimation) or anti-imaging

(interpolation) filters in each stage compared to a single stage realization.

The decimation in Figure 2-11 can be realized in three stages if the decimation

factor D can be expressed as a product of three integers: D,, D, and D,.
Referring to Figure 2-11, in the first stage, the signal x(n) is decimated by a
factor of D, =15. The output is further decimated by D, =3 in the second stage
and the output of the second stage is decimated by a factor D, =2 in the third
stage, resulting in an overall decimation of x(n) by D=(DD,D,)=
15x3x2 =90. The filters H,(z) and H,(z) are so designed that the aliasing in
the band of interest is below a prescribed level and that the overall passband and

21

stopband tolerances are met. The filter of the final stage H,(z) may be quite

sharp, but its sampling rate is much lower than the original one, reducing
significantly the overall computational burden. This multi-stage sampling rate

conversion system requires less computation and offers more flexibility in filter

design.
x(n) | ' y(m)
LA L5 —mm | 4 — 0w 2

Fs Fs Fs

2 '3

1

Figure 2-11. Decimation realized in 3 stages (From Ref. 3).

6. Cascaded Integrator Comb Filters

In software radio systems, sample rate changes can be very large, with
changes from many tens to MHz to around 100 kHz being common. Of course,
such a requirement leads to large order and high-rate digital filters, which can
easily become a bottleneck in the overall system design. A cascaded integrator
comb (CIC) filter can be used to reduce the computational demands. A CIC filter
is what the name indicates: a cascade of simple integrators (accumulators) and a
cascade of comb filters (delay and subtract from current sample). The CIC filter
can implement an interpolation or decimation filter that uses only delay and add
operations and thus is well-suited for FPGA and ASIC implementation.
Furthermore, the same basic filter structure can be used to handle variable

sample rate conversion.

The CIC implementation of a decimation filter is the cascade of an integrator
stage, a decimation procedure, and a comb stage as shown in Figure 2-12. To
analyze the CIC filter's response, combining the integrator and comb stages into
a single transfer function is important to reduce the complexity of the analysis.

However, to reduce the computational expense of the operation, the

22

implementation of the filter is performed in two separate sections, before and

after the decimation.

Integrator Stages ’ Comb Stages
Stage 1 Stage N Stage N+ 1 Stage 2N
z-1 z zM zM
-1 -1
High 4) 4 4 b Low
Sample Rate > ——- > x| | R {wi >C> > -——- Sample Rate
Input > LV Fs FoR Output

Figure 2-12. A CIC decimation filter (From Ref. 4).

The frequency response (with respect to the higher input sample rate) is:

- (wRM\T'
H (w)|= (j

(2.4)

where:

N is the number integrator and comb stages,
M is the differential delay of each comb stage,
R is the decimation rate and

w is the higher input frequency.

By letting w'=w/R, the frequency response with respect to the

decimated sample rate is found to be:

(2.5)

As an example, the frequency response of that equation is plotted in
Figure 2-13 for N=4, M =1, R=7 for a cutoff frequency f, =1/8. The input

sample rate is 7 and the output sample rate is 1.

23

Note that above a normalized frequency of 1, the transfer function will fold
and we will have aliasing, but its magnitude will be less than 50 dB down from its
maximum value. Moreover, since the CIC filter will most probably be followed by

a decimation stage with a FIR filter with a cutoff frequency of m/D (where D is

the decimation rate), the aliasing in the useful portion of the spectrum will be

even less.
CIC Filter Frequency Response
I:I T T T T T T
-50
75}
=
ak]
£ -100
2
pr
o
[ak]
[l
[ak)
3 -180
=
fag]
1]
=
-200
e | | | | | |
0 05 1 15 2 25 3 35
Mormalized Frequency Relative to the Low Sampling Rate
Figure 2-13. Frequency response of a CIC filter.
7. Polyphase Decimation and interpolation

The decimation and interpolation procedures can be also implemented by
the polyphase filters (Figures 2-14 and 2-15). In this implementation, the
decimation or interpolation procedure is decomposed into a sum of D (or /)
parallel filtering stages. In the decimation process the filters px(m) are formed by
decimating x(m+k) by a factor of D. In the interpolation process, each of the /

stages contributes a sample at the output.

24

Y

+D

—

po(m)

p;(m)

Pp.4(m)

Y

Figure 2.14. General structure of a Polyphase Decimator (From Ref. 4).

y(m)
>

x(n) > po(m) ""__’T]
Yl pm —h

d °

e °

° °

—> p;_-;(m) —> TI

Figure 2.15. General structure of a polyphase interpolator (From Ref. 4).

25

With the use of the polyphase filters, the filtering occurs always at the

lowest frequency, thus reducing the computation burden significantly.

Polyphase implementation of the decimation process of the reception
channels constitutes a characteristic of the hardware we are going to use.
However, since we will not deal with it extensively, we mention it here just for

reference.

D. DIGITAL GENERATION OF SIGNALS

The synthesis of waveforms, especially sinusoidal signals, is an important
part of a communication system. Sinusoidal signals are typically used in many of

the processing steps, such as modulation, pulse-shaping, and filtering.

Analog techniques have long dominated frequency synthesis. Analog
frequency techniques are based on bulky analog devices such as quartz crystals,
inductors, capacitors, and mechanical resonators. Digital techniques began to
gain prominence in communication systems because of their superior accuracy
and immunity to noise and because they are easy to manufacture with very large
scale integration (VLSI). Direct digital synthesis (DDS) techniques generate
signals directly in discrete time. Any arbitrary waveform can be generated for
digital communication systems, as the amplitude, frequency, and phase can be

varied to create a modulated signal.

Direct digital synthesizers allow the implementation of digital modulation
techniques, after which the signals can be converted to analog signals for
transmission. Amplitude modulation (AM) can be created by multiplying the
sinusoidal output of the ROM with the modulating signal before passing it through
the DAC. Phase modulation (PM) is created by changing the instantaneous
phase angle, i.e., by using the modulating signal to alter the input to the ROM

(phase). Frequency modulation (FM) is created by varying the instantaneous

26

frequency, and this is accomplished by using the modulating signal to increment

the phase.

1. Comparison of Direct Digital Synthesis with Analog Signal
Synthesis

The digital nature of DDS makes it possible to set the frequency of the
output wave-form more precisely than analog techniques. In analog systems, the
frequency is controlled with analog components, resulting in poor stability due to
drift in the components, poor frequency resolution due to limitation in analog
dials, and difficulty with digitally controlled tuning. Furthermore, analog signal
generators stray in frequency over time. Changes in temperature, humidity, and
other variables can affect the output of the analog oscillator. The instrument’s
overall accuracy varies with time and from one unit to the next. Precise
generation of signals leads to the feasibility of very close channel spacing, which
is very significant for narrowband modulation formats. Analog systems are
generally limited to less demanding applications in which tight frequency control
and accuracy are not crucial. Fine frequency steps are achieved easily with a
DDS because relatively small increases in circuit complexity can add a decade of
additional resolution. Most of today’s DDS designs provide step sizes finer than 1

Hz and many can achieve 1 mHz or smaller.

A summary of the advantages and disadvantages of the DDS is presented
in the table 2-1.

2. Approaches to Direct Digital Synthesis

There are two basic approaches for generating signals directly from digital
hardware. The first is commonly referred to as the ROM Look Up Table
approach, which can also be used to generate sinusoidal signals. The sampled

values of the sine waveform are stored in ROM and are output periodically

27

through a DAC to generate the output waveform. The second approach, pulse
output DDS, uses a phase accumulator to obtain a series of periodic pulses (or a

rectangular or sawtooth waveform) from which other waveforms can be created.

Property Advantages Disadvantages
Precision Possible to set frequency
accurately
Can achieve very high
resolutions (<1mHz)
Flexibility Very easy to change the
parameters
Ease of VLSI implementations are

Implementation

inexpensive and readily
available

Switching
Frequency

Possible to have very high
switching speeds, within 1us

e OQutput is smooth and transient
free during frequency change

» Possible to have continuous
phase during frequency
switching

Size of the e Can be implemented at a » Techniques for reducing
Equipment fraction of the size of a similar spurious signals, e.g., hybrid
analog synthesizer DDS-PLLs, can increase the
size of the system

Bandwidth » Can be varied by changing the |+ Output frequency limited by

clock speed the Nyquist frequency to half
* Bandwidth can be increased by the DDS clock rate (Fclk/2)
using a DDS-driven PLL » In practice, limited to Fclk/4
Spectral Purity » Possible to get very high quality | « Lots of spurious signals

of signals when the size of the when there is phase
accumulator is an integral truncation or other jitter
multiple of the step size and * Need to use special

there is no phase truncation techniques to reduce
spurious responses, e.g.,
ROM compression, hybrid
DDS-PLL, or randomization

Table 2-1. Comparison of Direct Digital Synthesis with Analog Signal Synthesis

3. Pulse Output Direct Digital Synthesis

One of the simplest forms of a DDS system is a pulse output DDS (PO

DDS) system. This DDS approach generates pulse, sawtooth, or rectangular

waveforms. Other waveforms can be created from these basic waveforms. The
28

idea is to create the rectangular waveform by cycling through an accumulator as
a way to create an adjustable pulse frequency from a stable high-frequency
driving clock. PO DDS consists of an N bit adder and register to form an
accumulator. A frequency word 4, is added to the accumulator once every clock

period, T, . Figure 2-16 shows a PO DDS.

Frequency Word F, * Square Wave Output
B MSB
A€ Output N-Bit Storage
N-Bit Adder Register
S(n)
Carry A+B Input Clock
Sawtooth Waveform
F
Pulse Qutput clk

Figure 2-16. Pulse Output Direct Digital Synthesis (From Ref. 4).

The output of the accumulator, S(n) at time n, is given by
S(n)=(S(n-1)+A,)mod2" and is performed in modulo 2" arithmetic. The
accumulator will overflow, and the counter resets on average once every

2" | A clock periods. The average frequency for which the counter is reset is

F,=t0F (2.6)

out 2N ck *

The output of this synthesizer could be the carry output of the accumulator

for a pulse output or the most significant bit (MSB) of the accumulator to

represent the approximate square wave output, or S(n), for a sawtooth

waveform.

29

4. Rom Look-Up Table Approach

The ROM LUT approach uses sampled values of a periodic function
stored in a ROM. Every clock cycle, a value of the periodic function stored in the
ROM is output through a DAC to generate the synthesized signal. The output
from the DAC, however, is a distorted analog signal due to the sample and hold
nature of the waveform. Therefore, the signal obtained at the output of the DAC
is passed through LPFs and amplifiers to obtain the final analog waveform.
Sometimes it is advantageous to perform digital filtering before the digital-to-

analog conversion to compensate for the distortion of the non-ideal analog filters.

DDS-based function generators are based on a single crystal oscillator,
which generates a reference clock frequency. The structure of a DDS system
using a ROM LUT is shown in Figure 2-17. The adder and register function as
an accumulator and increment the output value by A, at each clock cycle. For

example, if the first adder output is zero and the phase increment A, is 17, then

the second output would be 17, the third would be 34, the fourth 51, etc.

Clock F,

\ 4 ‘-

Ph " X

ase

Address 5| ROM N
Increment >| Adder —>| Register 1 Lut > pac [
Register >
Filter/Amplifier

Phase Increment Value A,

Figure 2-17. ROM LUT Direct Digital Synthesis (From Ref. 4).

The output of the accumulator takes the form of an address used by a
ROM LUT that contains the waveform samples. The number of clock cycles

needed to step through the entire ROM LUT defines the time period of the
30

waveform. The waveform period is determined by A, . The LUT holds the digital

representation of the desired waveform, which is made up of digital words that
define the amplitude of the waveform as a function of phase. The address

generated by the adder represents the phase value of the waveform.

The address generator sequentially reads the table of digital values out of
the memory and passes them to a DAC to generate the output waveform. The
DAC changes each of these digital words into an analog voltage, which is fed
through filters to reduce the distortion and amplifiers to produce an analog signal.

The period of the output waveform is based on the phase increment value A,

and the frequency of the clock signal F,, .

5. Performance Assessment of the DDS Systems

The major drawbacks of a DDS system are spectral purity and sideband
noise. The sources of spurious signals are amplitude and phase truncation due
to the limited number of bits used for their representation, as well as DAC non-
linearities. Several methods are used to mitigate these problems, such as the
randomization (Ref. 4). A block diagram of the Wheatley’s procedure is shown in
Figure 2-18.

N A\ g s
Accumulator // ,/ > ROM 4’ DAC —mp

Overflow 2N ﬁ

Random
Number
Generator

Figure 2-18. Wheatley’s procedure (From Ref. 4).
31

The method consists of adding a sequence of random numbers to the
contents of the accumulator in a prescribed manner, in order to convert the
discrete harmonic signals into a continuous noise floor, whose level is much
lower than that of the harmonic signal. Figure 2-19 shows the spectrum of a

DDS, before and after the Whealtey method has been applied.

Spectral Characteristics for N= 9, W=5,na=32,andA =7
’ Spectral Characteristics for N = 9, W= 5, na = 32, and A, = 7 (Wheatley's Procedure)
T T T T T T T T T

0
20 : ST S F I 20 H b
30 H . . : B B0 e T RO SITF ASRIRINS IS ¥
: o = N N N M M N N
: 8
a0l . | 1 [PRYT RO VONY PPV ORPINEN SHNPIOT [F OO 1Y T TSINIOTE AR SO I
sl sl L4088 LA,
| |
: |]
soH || 1. . ; H 60 |4
20 . : ‘ ; ‘ 20— i i i i i ; ; i ;
0 0.1 02 03 04 05 0.6 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1

Figure 2-19. DDS spectrum before and after the application of Wheatley’s
method (From Ref. 4).

E. ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERSION

The digital-to-gnalog converters (DAC) and the analog-to-digital
converters (ADC) constitute in many instances the determining factor for the
performance of the software radio, since they impact the power consumption,

dynamic range, bandwidth and total cost.
Ideally, the data conversion should take place immediately after the

antenna in the receiver chain. The RF signal should be sampled and all the

downconversion procedure should be carried out entirely in the digital domain.

32

However, this process would place some extreme constrains on the data

converter. It would need:

* Very high sampling rate, in order to support wide signal bandwidths

* A large number of quantization bits, in order to support a high dynamic
range.

* A large operating bandwidth (in the order of hundreds of MHz or even
some GHz) to accommodate a greatly varying range of signal frequencies.

» A large spurious-free dynamic range to allow the recovery of small-scale
signals in the presence of strong interferers.

 Small power consumption, while simultaneously meeting all the above

criteria.

Unfortunately, the current capabilities of the available technology do not
make it possible to fabricate converters meeting the above specifications. So, an
RF frontend is included after the antenna, at which the signal is downconverted

to an appropriate IF frequency and data conversion takes place at that frequency

F. CHOICE OF THE APPROPRIATE HARDWARE

The choice of the hardware composition of a software radio is a key step
in its design. This choice is dictated by the requirements in four main areas:

flexibility, modularity, scalability and performance.

There are three main categories of digital hardware available: Digital
Signal Processors (DSP), Field Programmable Gate Arrays (FPGA) and
Application Specific Integrated Circuits (ASIC). Each of them exhibits a certain

level of reprogrammability, that is, an ability to change the device software.

33

1. Digital Signal Processors (DSP)

A DSP is designed to support high-performance, repetitive, numerically,
intensive tasks and very high 1/0 performance. DSPs are designed to include
special functional units in the hardware as well as special instructions in the
microcode. Some DSPs provide for several accesses to memory in a single
cycle. Program flow control features speed up the execution of common DSP
tasks like FFT or Viterbi decoding. Large accumulators in DSPs help reduce
precison problems. Certain DSPs are also optimized for specific applications like
wireline communications, wireless communications, or general control

applications.

2. Field Programmable Gate Arrays (FPGA)

The FPGA was introduced in the mid-1980s as a device to process digital
logic. FPGAs were designed for multilevel circuits, which means they could
handle complex circuits on a single chip. Since FPGAs were prefabricated, they
were quicker to use and less expensive. The volatility of SRAM makes the FPGA
attractive for digital systems. FPGAs are now used in various configurations, as
in multimode and reconfigurable systems, and are very useful in meeting the

needs of a software radio system.

Like programmable logic devices (PLDs), FPGAs are also completely
prefabricated, but they are optimized for multilevel circuits rather than two-level
logic and contain special features for customization. These properties allow them
to handle much more complex circuits on a single chip but often sacrifice the
predictable delays of a PLD. Several kinds of FPGAs exist, such as SRAM cells,
erasable programmable read-only memory (EPROM), electrically-erasable

programmable read-only memory (EEPROM), or anti-fuses.

34

3. Implementing DSP Functions in FPGAs

There are two ways of implementing DSP functions on an FPGA, bit serial
and bit parallel distributed arithmetic. Both methods are scalable, which allows
the designer to optimize the design for performance and density. Bit serial
distributed arithmetic is an implementation technique that processes parallel data
flow structures bit sequentially, thereby allowing multiple functions to performed
simultaneously. For example, when implementing a sixteen—tap FIR filter, all
sixteen data samples are multiplied in parallel in a bit serial process. Bit parallel
distributed arithmetic is a similar technique but with multiple bits being processed
in parallel, allowing the overall performance of the design implementation to
scale proportionately to required resources. At high-performance levels, e.g.,
thirty to seventy million samples per second (MSPS), the FPGAs can be
partitioned to perform all operations in parallel, minimizing the number of clock
cycles required to perform a function. At lower-performance levels, e.g., one to

ten MSPS, bit-sequential operations allow more efficient resource use.

To better understand the performance and cost benefits using FPGA
devices, consider the design of an eight-bit, sixteen-tap FIR filter. Most
programmable DSPs can perform a memory access control (MAC) function in
one clock cycle. Therefore, implementing the FIR filter in a 66-MHz DSP would
yield a theoretical maximum saple rate of 66 MHz/16 taps = 4.125 MSPS,
excluding memory overhead operations. In contrast with a FPGA-based
implementation, the designer could use bit-serial distributed arithmetic where all
sixteen taps are processed in parallel. Using the same 66-MHz clock rate, this
implementation can process the data at 15 ns per bit; for eight-bit data this
equates to 8.33 MSPS, twice the sample rate of 66-MHz programmable DSP

device.

35

4, Using a Combination of DSPs, FPGAs, and ASICs

When system performance demands exceed existing processor capability,
a number of approaches are used to solve the problem, including custom
integrated circuits (ASICs), function specific DSP cores, multi-processor
architectures and reconfigurable architectures. A popular trend is the use of
DSPs as cores inside ASICs to provide some degree of flexibility to the ASIC.
Another popular method of boosting the performance of a DSP places multiple
DSPs in parallel along with a high-speed memory. FPGAs can also be used to
enhance a given DSP. The parallel paths of an algorithm can be implemented on
the FPGA while the DSP handles the sequential and other general sections of
the algorithm. The FPGA can be programmed to perform any number of parallel
paths. These operational data paths can consist of any combination of simple
and complex functions, such as adders, barrel shifters, counters comparators,

correlators and so forth.

G. OBJECT ORIENTED PROGRAMMING (OOP) AND THE SDR

The main principle of the OOP is the existence of objects. Objects are
autonomous entities with their own functionality and data, which constitute
distinct instantiations of classes. Classes are prototype entities which define what
the functionality and data will be. Objects and classes have useful properties

such as:

* Inheritance: a derived - or child - class can inherit all the attributes

and functionality of the parent class and add its own functionality.

* Polymorphism: the functionality of the parent class can be modified,
or take alternate forms, in order to serve the specific needs of the

derived class.

* Encapsulation: The access to the functionality and data of the class

can be controlled by the class creator. In this way, enough information

36

can be accessible by the outside programmer in order to take
advantage of the class functionality, but not adequate enough to

disturb the normal behavior of the class.

 Overloading: This feature allows the class to create multiple
behaviors according to the situation and thus adapt to a variety of

conditions.

A radio platform can be broken up into discrete objects, each of which
interacts with other objects in the system. This object oriented way of looking at
the world can be translated into software and the several programs that control
the functionality of the platform can be based on discrete objects, each of which

interacts with other objects and the system through well defined interfaces.

The use of objects will allow the software to mimic, at least in form, the
layout of a real system. The object-oriented approach, through the use of
abstract classes, can be used to create a framework from which development

can be structured and system integration can be simplified.

There are several possible candidate languages which can serve as the
development platforms for writing the software. Each one has advantages and
disadvantages. In the following two paragraphs, we will examine two of them,
C++ and Java. This is due to the wide acceptance of the above languages from

the programming community, as well as to the extensive features that they offer.

1. C++

So far, C++ seems as the most suitable language for the development of

the SDR applications. This is due to several reasons:

* ltis an inherently object oriented programming language.

37

» Since it is derived from the classical C language, it has been in use for

many decades and is widely accepted.

» It offers the possibility for detailed access and control into the lowest
level of hardware, thus ensuring fast execution and good
performance, when the application is time critical (high data rates,

etc).

A drawback of the language stems from its inherent advantages: In order
to ensure the fastest possible performance, the overhead and the self control of
the code is minimal, resulting in errors, many of which appear at run time and are
quite difficult to debug. Moreover, the freedom that it gives to the programmer,
has as a counterbalance a relatively complex syntax and complicated rules and
dependencies between the objects of the application, which sometimes require
extensive experience from the software developer in order to build large

comprehensive and easily maintainable applications.

2. Java

Java was created out of an effort of the software community to overcome
the inherent difficulties of the C++. Although it is a fully object oriented language
(actually more object oriented than C++; nothing can exist outside a class, unlike
C++ where global variables and functions are allowed), it has several unique

features such as:

» Simplified dependency rules between the different entities of the
application, which result to much easier software development and

maintenance.

* More overhead and checking rules, which avoid common problems of
the C++ language, such as bounds checking, memory overflows and

proper objects use.

38

» Platform interoperability. The Java applications are not written with a
specific platform in mind. The output of the code compilation is a
binary code which communicates with the specific hardware on which
it is supposed to run, via Hardware Abstract Layers. The Java

program is actually interpreted during runtime.

The main disadvantages of the language stem from its features. The
extensive overhead, procedures such as the garbage collector, which run at
unpredicted times and for unpredicted time lengths, as well as the slow execution
rates due to the runtime interpretation of the binary code, raise serious doubts
about the ability of the language to support the core functions of the platform,

which are time-critical and require a minimum acceptable performance.

However, although rather inappropriate for the physical and data layers,
Java could be a good candidate for the application layer. This layer will need to
deal with constantly changing QoS settings, making the development of the
applications using a less dynamic language such as C++ very difficult.
Furthermore, since Java was developed with the Internet in mind, it is designed

to allow easy adaptation between platforms with different capabilities.

H. MULTITHREADED PROGRAMMING

A typical software radio application will most probably involve multiple
transmission and reception channels operating simultaneously. The best and
most reasonable way to achieve the parallel execution of the routines serving
each one of the channels, especially in a multitasking environment such as
Windows where precise timing control of the execution of the code is impossible,

is to use multithreaded programming.

A thread as the word implies, is an autonomous path of code execution.

Every application is a large thread. Within this master thread, multiple other

39

threads can be launched, all of them running simultaneously (technically
speaking they run in turns, consuming a bit of the processor time, but to the user
they seem to run simultaneously) and — most important — sharing the same data

segment with the launching application.

The 32 bit versions of the Windows operating system support
multithreaded operation. Moreover, the last generation of the Intel Pentium 4

processors is specially designed for multithreaded applications.

The problem that multithreaded programming has to solve is how the
several threads communicate and how they signal events to one another. As we
shall see in Chapter 4, every time the communication gets active, a master
thread is launched, which in turn launches one thread per active channel.
However, how will the master thread know when the channel threads are done

with their work, in order to proceed further?

The above problem has two solutions:

a) Through a global variable: The thread that wants to signal the change
of state, modifies the value of a global variable. The monitoring thread constantly
reads the value of the variable and when it changes, the thread takes appropriate
action. Perfect you will say. Well, not exactly. This method has some drawbacks,
the most important of which is that as the monitoring thread continuously
monitors the value of the global variable, it consumes unnecessary processor
cycles, thus slowing the execution of other threads. This bottleneck may limit the
performance of the application in the case of high data rates. So, in order to

overcome the problem, inevitably we pass to the second solution which is ...

b) Through events. A window event is a flag which has two states: set and
reset. When the monitoring procedure has to wait for a signal, it executes the
order ::WaitForSingleEvent(). By executing this command, it falls in an idle state,
where it stays in a suspended mode and does not consume any processor time.

When the signaling event needs to signal a change of state, it sets the
40

appropriate event. This action wakes the monitoring thread, which continues the

execution of its code.

l. FROM HERE ...

This chapter has outlined several of the technologies used in the design
and implementation of a software defined radio platform. By now the user has
acquired a pretty good idea, although not detailed admittedly, about the

principles of operation of the equipment we are using in this thesis.

Now, it is time to see the actual equipment, have an inside look at its
capabilities, the aforementioned principles that it incorporates and how we can
take advantage of them in order to control the hardware for our purposes of

communication. This is the objective of the next chapter.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

lll: DESCRIPTION OF THE HARDWARE

A. INTRODUCTION

In the previous chapter we set all the necessary theoretical background
required to understand the principles of operation of a software radio transceiver.
Now it is time to see how these principles are applied in practice. In the current
chapter we will describe the architecture and the characteristics of the hardware
we are going to use. We will follow the signal flow from the host computer
memory to the transmitter output and from the receiver input to the host
computer memory. We will see how the signal is processed at the several
stages of the transceiver and how we can intervene and program the desired

output of this processing.

At the end of this chapter, the reader will be ready to proceed to the next
chapter, which is actually the description of all the work that has been done
during this thesis.

B. HARDWARE CHARACTERISTICS

The hardware used for this thesis is the WaveRunner 253 Plus PCI high

performance programmable transceiver, manufactured by Red River, Richardson

TX. Its main characteristics are:
* Industry Standard PCI Form Factor
e 40 MHz Analog I/0 Bandwidth (0 to 40 MHz)
e 8.6 MHz Maximum Signal Bandwidth
 Up to 8 Transmit and Receive Channels
* Up to 90 dB Linear Dynamic Range

« PCI Bus Master With Auto DMA Feature
43

» 32/64-bit and 33/66 MHz PCI Support

e Windows / Linux Drivers

A picture of the transceiver is shown in Figure 3-1. A detailed block

diagram of the device is shown in Figure 3-2.

— SIS

Figure 3-1. WaveRunner 253 PCI programmable SDR transceiver (From Ref. 7).

Receiver Data Buffer

Receiver Front-end 84k = 32bits
A N oo .
= 7| aPDc q
Wariable LHA Filter Buffer o
Attenuator i
Internal
=
TCX Sample Clock > :
»{ GQFDC »
FLL Synthesizer o
Reference " PCI Interk
Select nterface
REF IN External Reference Switen PLL f_) Controller
J2 > 52
aruc |
REF OUT Reference Output | > M
43 | -
T OUT | + - -+
a | ® ; oA | arpus o
Transmitter Front-end
B4k x 32bits

Transmitter Data Buffer

Figure 3-2. WaveRunner 253 Plus detailed block diagram (From Ref. 7).
44

The device consists primarily of 3 sections:
* The transmitter section
» The receiver section

* The memory controller section

The function of each one of the above sections will be described

analytically in the following sections.

C. TRANSMITTER DATAPATH

The transmitter is comprised of four elements:

* The Transmitter Data Buffer

* Two Dual Quad Programmable Digital Upconverters (QPUC)
* One D/A Converter

e The Transmitter Front-End

A diagram of the transmitter datapath is shown in Figure 3-3. Detailed

description of the above elements follows.

Transmitter Data Buffer

64Kk x 32bits
TX Out
QPUC — D/A TX Front-end % Ja
PCI Interface A .
N e o Controller
‘ TX Sample
QPUC [™ Clock (93MHz)
N
< {M)
N

Figure 3-3. WaveRunner 253 Plus Transmitter datapath (From Ref. 7).
45

1. Transmitter Data Buffer

The transmitter has a dedicated 256-kbyte buffer capable of storing 64
ksamples of complex data (16-bit |, 16-bit Q). The buffer acts as a first-in, first-out
(FIFO) to perform data rate translation between the PCI bus and the QPUC
inputs. The buffer operates as a multi-queue FIFO that can be organized into a
variety of configurations from a single large queue occupying all 256 kbytes to
eight smaller queues of varying size. This flexibility provides the user ultimate
control over data flow and can be used to tailor the memory to different channel

rates and bandwidths.

2. Dual Quad Programmable Upconverter (QPUC)

Two Intersil ISL5217 QPUC chips are used to convert digital baseband
data into modulated or frequency translated digital samples. The QPUC can be
configured to create any quadrature amplitude shift-keyed (QASK) data
modulated signal, including QPSK, BPSK, and M-ary QAM. The QPUC can also
be configured to create both shaped and unfiltered FM signals. The QPUC
performs the compute intensive tasks of tuning, filtering, resampling, interpolation

and gain control.
As shown in Figure 3-4, two QPUCs in cascade provide up to eight
independent data channels. The final output of the cascaded pair interfaces

directly with the D/A converter to create a multi-channel analog waveform.

The key performance parameters of the QPUCs are:

46

Parameter Value

Input Sample Rate Resolution 330x10™ Hz

Interpolation Rate Range 16 to >65536
Max Individual Channel Bandwidth | 3.5 MHz (60 dB stopband)
Max Individual Channel Data Rate 5.8 Msps (complex)

Max Poly-channel Bandwidth 8.6 MHz (60 dB stopband)
Max Poly-channel Data Rate 17.2Msps (complex)
Resampler Type Non-integer

Filter Bandwidth Range <1 kHz to 8.6 MHz
Maximum User FIR Taps 256

Gain (Attenuation) Range 144 dB

Carrier Tuning Accuracy (93 Msps) | 0.02 Hz

Output Sample Rate 93 Msps

Table 3-1. Key performance parameters of the QPUCs

—F o

Digital Transmitter T

Data

Figure 3-4. QPUC implementation (From Ref. 7).

Analog Transmitter
Data

TX Sample
Clock (93MHz)

av,

A functional block diagram of the QUPCs is shown in Figure 3.5.

Real
Data Out

FM @ —>
Gain

Madulator
Quadraturs
Tuner
Mixer
Complex
Control ,?J
Timing T
NZD ") To oter
Camle Channels

Data (1,Q)
Shaping Gain Half-Band nterpolation ’_®
> Filter » Profie > Filter > Filter | [) ®
4 oo

k 4 A 4
A4 A J

T¥ Sample
Clock

Figure 3-5. QPUC channel functional diagram (From Ref. 7).

47

The function of the several stages is described below:

Input Data. The QPUC operates on a 32-bit (16-bit | and 16-bit Q)
complex input sample stream. Data is transferred form the transmitter data buffer
at a rate determined by the timing NCO. In FM mode, the QPUC uses the | data

path to process frequency samples.

Timing NCO. The QPUC features a 48-bit timing NCO driven interpolator.
This high precision interpolator enables either an integer or non-integer
relationship to be established between the input and output sample rates. This
feature provides for the selection of almost any input sample rate, even with a
fixed 93-MHz output.

Shaping Filter. The shaping filter tailors the complex symbol shape via a
user configured FIR filter of up to 256 taps in length. The number of user taps
available is dependent on the ratio of output to input rates, the higher the ratio
the more taps available. The shaping filter must be a lowpass implementation
and provide sufficient rejection to suppress images generated by subsequent

interpolation stages.

FM Modulator. Each QPUC channel contains an FM modulator that can
be configured to operate before the shaping filter to bandlimit the FM output, or
after the shaping filter to provide shaped symbols into the FM modulator. In
bandlimited FM mode the | channel is used to directly modulate the channel
carrier, in shaped pulse mode the output of the shaping filter is used to frequency

modulate the carrier.

Gain Profiler. The gain profile function is currently unavailable for use by

the transmitter.

48

Halfband and Interpolation Filter. The QPUC provides a fixed 11-tap
halfband filter and a timing NCO driven interpolator for data resampling and rate

conversion up to the final output sample rate.

Carrier NCO/Quadrature Tuner. The carrier NCO provides sub-Hertz
tuning resolution for each channel output using a 32-bit phase accumulator. It
features a pre-set phase offset and synchronization capability. The carrier NCO

is modulated with the digital input data using a quadrature mixer. The real

component of the quadrature mixer with the form /cos(6)+Qsin(8) is fed

through the gain control section to the D/A converter.

Gain Controller. Each channel contains a gain control section that
provides for attenuation of the transmitted output over a range from 0.0026 to
144 dB. A user-commanded scaling multiplier implements the gain control

function using a 12-bit gain value and 3-bit shift code.

Channel Summer. The four QPUC channel outputs are combined in the
Channel Summer along with the cascaded QPUC output to create a real eight-

channel composite data stream for the D/A converter.

The two Intersil ISL5217 QPUC chips are labeled QPUC-A and QPUC-B
for reference in the memory map. The user has access to all control and data
functions through the "QPUC-A" Command/Status Interface and "QPUC-B"
Command/Status Interface registers. Access to the coefficient and gain
memories in the QPUC are performed using the indirect addressing method
described in Ref. 8.

3. Digital-To-Analog Converter
The QPUC digital output drives a 14-bit D/A converter to generate an

analog signal. The D/A converter is operated at a fixed rate of 93 MHz. The
49

primary D/A performance parameters are listed in the following table:

Parameter Value (typical)
Resolution 14 bits

Sample Rate 93 Msps
SFDR 63 dBc

SFDR (4 MHz window) | 80 dBc

SNR 70 dB

Table 3-2. DAC performance parameters
4. Transmitter Front-End
The D/A output passes through a 9-pole Chebyshev 40 MHz lowpass

reconstruction filter prior to a final buffer amplifier. The functional diagram of the

front-end is given in Figure 3-6:

40 MHz 3dB
LPF Fad
TX Out
. J J4
f -,
S-pole
Chebyshey

Figure 3-6. WaveRunner transmitter front-end (From Ref. 7).

The main parameters of the transmitter are described in the table below:

Parameter Value

Sample Clock Rate 93 MHz

Phase Noise (Internal Sample Clock) | —80 dBc/Hz @ 10 kHz offset

Internal Reference Clock Stability +/— 2.5 ppm (@10 MHz, —20 to +70 C)
Spur Free Dynamic Range 75 dB

Frequency Range (3 dB) 0.1 to 40 MHz

Full-scale Output Power (50 Ohms) | —12 dBm

Table 3-3. Transmitter main parameters

50

D. RECEIVER DATAPATH

The receiver is comprised of four primary elements:

* The Receiver Front-End

* One A/D Converter

» Two Dual Quad Programmable Digital Downconverter (QPDC)

e The Receiver Data Buffer

A diagram of the receiver datapath is shown in Figure 3-7. An explanation
of the operation of each stage of the receiver, is given in the following

paragraphs.

Receiver Data Buffer

Receiver Sample B4k x 32bits
Clock {93MHz) (-\LJ v ‘

Quad PDC

. | PCl Interface
Rj1| M Fan | ADC — Controller | e —-

Wariable LMA Filter Suffer —

Attenuator

\ J

Quad PDC

Figure 3-7. WaveRunner 253 Receiver Block Diagram (From Ref. 7).

1. Receiver Front-End

The receiver front-end amplifies and filters the analog input signal in
preparation for A/D conversion. The front-end is made up of a digitally controlled
attenuator, low-noise amplifier (LNA), and a filter element.

The attenuator is commanded over the PCI bus using the Attenuator
Power Control register. The 8-bit control value can be varied from decimal 255
(no relative attenuation) to 0 (>70 dB relative attenuation). The attenuator can be
used as part of software automatic gain control (AGC) circuit to control the input

51

level to the A/D converter. the attenuator provides precise amplitude control over
the first 20 dB of operating range. The attenuator curve begins to drop steeply
after the 20 dB point.

The LNA is used to set the noise figure of the receiver and help drive the
input to the A/D converter. The added amplification eases the signal power

requirements for systems interfacing to the receiver.
The filter is implemented as a 7-pole Chebyshev lowpass filter with a
cutoff frequency of 40 MHz. The lower frequency limit of 3 MHz is dictated by the

RF transformer used to couple the signal into the A/D converter.

The key parameters of the RF front-end are:

Parameter Value

Analog Attenuation Range 20 dB (precision) 70 dB total

Maximum Input No damage +15 dBm (minimum attenuation)

Sample Clock Rate 93 MHz

Phase Noise (Internal Sample Clock)

—82 dBc/Hz @ 10 kHz offset

Internal Reference Clock Stability

+/— 1.5 ppm (@10 MHz, —20 to +70 C)

Linear Dynamic Range (1 MHz bandwidth)

90 dB

IMD Rejection

75 dB (typical)

Frequency Range (3 dB)

0.1 to 40 MHz

Full-scale Input Power (50 Ohms)

—14dBm (minimum attenuation)

Noise Figure

7.9dB

Input Third Order Intercept (1IP3)

+6.2 dBm (minimum attenuation)

IMD Rejection

80 dB (typical)

Table 3-4. RF-Front-end key parameters

2. Analog-To-Digital Converter

The receiver signal is sampled using a 14-bit A/D converter that can be
used in either bandpass or baseband operating mode. The A/D operates at a
fixed rate of 93 MHz with a resolution of 14 bits.
52

3. Dual Quad Programmable Digital Downconverter (QPDC)

Two Intersil ISL5216 QPDC chips perform the digital receiver tuning and
filtering functions. The digital downconverter is one of the key receiver signal
conditioning components in a software radio system. It can be configured directly
from user application code to form carrier and symbol recovery loops as well as

other critical demodulation functions as part of software defined radio.

The dual QPDCs provide up to eight independent data channels as shown
in Figure 3-8. The QPDC accepts raw sample data directly from the A/D
converter and performs the compute intensive tasks of tuning, filtering,

decimation, gain control, and re-sampling.

93IMHz [Digital
PLL VoS Output
N g
Quad PDC
Analog -

Input
ADC

Cluad PDC

Figure 3-8. WaveRunner 253 QPDC configuration (From Ref. 7).

Some of the key performance parameters of the QPDC are listed in the
following table:

53

Parameter Value
Input Sample Rate 93 Msps
Carrier Tuning Accuracy (93Msps) | 0.02 Hz

Decimation Rate Range

4 to more than 65536

Max Individual Channel Bandwidth

3.5 MHz (60dB stopband)

Max Individual Channel Data Rate

5.8 Msps (complex)

Max Poly-channel Bandwidth

8.6 MHz (60dB stopband)

Max Poly-channel Data Rate

23.2 Msps (complex)

Filter Bandwidth Range

<1 kHz to 8.6 MHz

Maximum User FIR Taps

256 typical, 384 max

Maximum FIR Filter Rejection

110 dB

AGC Range

96 dB

Output Sample Rate Resolution

-9
1.29x10 Hz

Resampler Type

Integer and Non-integer

Output Formats I, Q, Mag, Phase, Frequency

Table 3-5. Key performance parameters of the QPDCs

A functional block diagram of a single QPDC channel is shown in Figure
3-9. Each channel implements a sub-band tuning architecture by tuning a narrow

filter to a selected point in the A/D converter passband.

Gwadrature
Tuner
AT

Dana
| @ = TIC Flker Flier Computs Engne
g? ,| DCecimation {Halfuand, FIR, Resampler)
WD

Carw tiag, Phase
Paolar Frequency

3
,

.. La

Figure 3-9. QPDC Block diagram (From Ref. 7).

The major elements of the QPDC channel are:
e Input Level Detector (not shown)
e Carrier Numerically Controlled Oscillator (NCO)/Quadrature Tuner

» Cascaded Integrator Comb (CIC) Filter

54

* Filter Compute Engine/Resampler
* Timing (symbol) NCO
« AGC

» Cartesian-to-Polar Converter (Magnitude, Phase, Frequency)

The following paragraphs provide a brief overview of QPDC functionality:

Input Level Detector. The input level detector monitors data as it enters
the QPDC and provides three averaging modes for determining the input signal
magnitude in the A/D converter. The three modes supported are integration,
leaky integration, and peak detection. The information from the level detector can

be used to adjust the analog gain as part of a software AGC loop.

Carrier NCO/Quadrature Tuner. The tuning function is implemented
using an NCO and quadrature mixer. The NCO phase accumulator is 32 bits
wide, allowing for sub-Hertz tuning accuracy and very low (—115 dB) spurious

response.

CIC Filter. The CIC filter is the first signal conditioning element in the
QPDC processing chain. The overall shape of the processing band is determined
through a combination of the CIC section and components of the filter compute

engine: half band, FIR, and resampler.

The CIC filter has a sin(x)/ x characteristic as shown in Figure 3-10. It is

an extremely efficient filter and is used to extract a band of interest and drop the

sample rate prior to precision filtering in the Filter Compute Engine section.

Filter Compute Engine (FCE). The purpose of the FCE section is to fine
tune the processed signal spectrum created by the CIC filter. The FCE provides

a variety of user-configurable filters including a series of fixed half-band filters

55

and a user-programmable finite impulse response (FIR) filter. The frequency
response of the built-in halfband filters is shown in Figure 3-11. The FCE also
provides for non-integer resampling using a polyphase filter in concert with a
precision timing NCO. The FCE has a built-in controller used to chain together
filter and decimation stages to create a precisely conditioned signal with an exact
shape, bandwidth, and sample rate. An example of a composite filter created

from the CIC and FCE combination is shown in Figure 3-12.

100 | , 7 \‘
420 — \ -
..... ! 1|] \ | /. L} \
140 Il |
0.0 06 10 15 20 25 30
fg/R

Figure 3-10. CIC characteristics. (a) Passband rolloff (N =Number of stages,
R =decimation factor, f, =sampling frequency). (b) 5" order

(N =5) CIC filter response (From Ref. 8).

0o —
-0
=20
=30 ¢
40 —
50 ¢
Q 50/
-0
-80
A0

| |
{ ' HBF3 |\ "\ H'i. \
00 - . \ L4
10 { ! h]
120 - _ L ﬁl. 1
0 0.125 0.25 0.375 0.5
fs

Figure 3-11. Frequency response of the built-in halfband filters (From Ref. 8).

56

Timing (symbol) NCO. The QPDC features a high resolution (56-bit)

timing NCO that, when used with the resampler, provides the user with the

capability to generate precise output sample rates independent of the QPDC

input sample rate.

10

-10

-20

-30

dB)

[

40

-50

Amplitu

-60

-TO

B0

-g0

-100

Figure 3-12. Composite filter example (CIC + FIR) (From Ref.

Single Channel Composite Filter Frequency Response

cic
FIR
Composite

Frequency (MHz)

7).

AGC. A full featured AGC loop is built into the QPDC for high performance

signal level control. The AGC loop can be used to extract small signals from

noise after large signals and out-of-band noise have been filtered by the CIC and

FIR filter sections. The AGC loop operates on 24-bit data emanating from the

FCE to provide up to 96 dB of dynamic range.

Cartesian-to-Polar Converter (Magnitude, Phase, Frequency). The

last section of the QPDC contains a Cartesian-to-Polar (CTP) converter. The

CTP converts data from complex | and Q format to a polar form made up of

magnitude and phase. Both data formats are available to the user to save

software overhead in converting between the two systems. The QPDC also

57

contains a frequency discriminator that can be used to directly output frequency

measurements.

QPDC Command/Status. The two Intersil ISL5216 QPDC chips are
labeled QPDC-A and QPDC-B for reference in the memory map. All the QPDC
configuration registers are user accessible through the QPDC-A
Command/Status Interface and QPDC-B Command/Status Interface registers
(Ref. 8).

4, Receiver Data Buffer

The receiver has a dedicated 256 kbytes buffer capable of storing 64
ksamples of complex data (16-bit I, 16-bit Q). The buffer acts as a FIFO to
perform data rate translation between the QPDC outputs and the PCI bus. The
buffer operates as a multi-queue FIFO that can be organized into a variety of
configurations from a single large queue occupying all 256 kbytes to eight
smaller queues of varying size. This flexibility provides the user ultimate control
over data flow and can be used to tailor the memory to different channel rates
and bandwidths.

E. CONTROLLER

The controller performs all local command and control functions while also
acting as an interface to the host computer. It communicates with the host over
an interface compliant with the PCI Local Bus Specification (66 MHz). The
interface supports both 32- and 64-bit transactions operating at either 33 or 66
MHz.

The controller occupies 2 Mbytes of memory space accessed from a
single base address register and is connected to PCI Interrupt A on the bus. The

PCI bus serves as the primary control and data interface to the card. The local

58

controller can operate as a master or target, with the ability to automatically

initiate DMA transfers of data between the transceiver buffers and host memory.

Interrupt Control / Status. A comprehensive set of interrupt enable and
status registers are available to support data movement and alert the host to
error conditions. Interrupt conditions are reported through the Interrupt Status
and Rx/Tx FIFO Interrupt Status registers. All interrupt flags are "trapped" and
held until an interrupt status read occurs which clears the flags in the respective

register.

Buffer Configuration. Separate 256-kbytes (64-bit by 32k) buffers are
dedicated to the receive and transmit datapaths. The buffers can be accessed

directly through 32- or 64-bit single or burst transfers over the PCI bus.

Memory Area Definition. Both the receive and transmit buffers can be
partitioned as one to eight distinct memory areas that are assigned to a
corresponding number of QPDC and QPUC channels. Each Memory Area looks
like an independent FIFO to the PCI bus interface. The Memory Areas can be
arbitrarily sized on 8-byte boundaries to load balance channels with different data
rates. The controller maintains read and write pointers to keep track of the next

address to be accessed.

Channel Assignment. The QPDCs and QPUCs can be configured to
process eight channels separately or to polyphase multiple (22) channels
together. If they are configured as eight independent channels, the controller
transfers data between each channel and the uniquely assigned Memory Area.
When they are configured to polyphase multiple channels together, data from

groups of channels need to access the same Memory Area.

DMA Transfers. The controller can transfer data to/from the host memory

using manual or automatic direct memory access (DMA). Manual DMA transfers

59

require the user to initiate the DMA transfer by writing to several registers.
Manual DMAs are typically initiated when a Memory Area FIFO generates an
over threshold interrupt. When Automatic DMA is used, the controller monitors
the status of the memory FIFO thresholds. When a threshold is exceeded, the
controller automatically initiates a DMA transfer to/from a user specified memory
location. Automatic DMA also has a provision for notifying the host process via
an interrupt that the previously specified number of DMA transfers have been

completed.

DMA Chaining. The Automatic DMA function is supplemented by a DMA
chaining feature that allows the controller to transfer data to/from a circular buffer
in host memory without processor intervention. The Auto DMA Block Count and
Auto DMA Address registers remain static when this feature is enabled. An
interrupt is still issued when transfer of the final data block completes, but the
controller will continue to transfer data to/from the next sequential address in host

memory instead of loading a new address.

More extensive description of the the channel configuration will follow at
the next chapter, because the details of these characteristics are the main area

of interest for the implementation of our software.

F. FROM HERE ...

The current chapter has outlined a brief description of the characteristics
of the hardware we are using. Indeed the capabilities of the hardware are vast.
Here we have described only a part of them, only those that are going to be

useful to our work.

Now, we are ready to proceed to the next chapter which constitutes the
actual work that has been performed: the description of the software developed

by the author.
60

IV: DESCRIPTION OF THE SOFTWARE

A. INTRODUCTION

In the previous chapters we examined some aspects of the theoretical
background of the Software Defined Radio technology, as well as the specific

architecture of the hardware we used in our effort to implement the SDR datalink.

Now it is time to describe the actual work that was done during this thesis.

This work actually consisted of two parts:
» Configuration and manipulation of the hardware

+ Data organization in order to achieve successful and meaningful

communication.

The first one of the above two parts was actually the most rigorous one. It

can be analyzed in the following tasks:
* Channel configuration
» Hardware initialization — configuration

» Data exchange administration

In order to implement the above described functionality, significant amount
of code was written in C++, using the Microsoft Visual C++ language, which
constitutes a part of the Visual Studio .NET programming suite. The channel
configuration was performed using a dedicated configuration tool provided by the

manufacturer.

The following paragraphs describe in detail all the work that has been

carried out.

61

B. HARDWARE LIBRARY AND DATA TRANSFER MODE

The hardware we used was accompanied by a driver for the Windows
operating system and a library of functions, through which the application could
access and program the card. These functions covered a variety of tasks:
opening and closing the card, allocating memory, configuring the PCI address
space, reading from and writing to specific card registers. The library was

incorporated into the application code.

After the card has been configured, data transfer between the host
computer allocated memory and the card buffers takes place automatically
without user intervention, taking advantage of the DMA chaining mode. During
this mode the user defines the parameters of the transfers (groups per channel,
blocks per group, symbols per block, memory areas-limits-starting and ending
offsets) and the DMA address is incremented automatically every time a symbol
is transferred, until it reaches the end of the memory segment allocated to a
specific channel. At that point, the DMA address is reset to its original value. In
this way, the channel memory is used as a circular buffer containing two or more
groups. When the card is accessing one of the groups, the host computer is
accessing another one. It is obvious that the data transfer rate between the host
computer memory and the storage medium (for example the hard disk) must be
at least as fast as the transfer rate between the card and the host memory. This
is the critical factor for the performance of the system. When a group of data has
to be transferred to or from the host computer memory, the card notifies the host
computer by raising the appropriate interrupt. The application responds to the
interrupt and takes the appropriate action via an Interrupt Service Routine. A
dummy routine is provided in the card library, which does practically nothing. One
of the tasks of the user application is to override this function with a more

meaningful one.

62

C. CHANNELS CONFIGURATION

The configuration of the WaveRunner channels actually consists of two

parts:

» Configuration of the Upconverter (DUC) and Downconverter (DDC)
integrated circuits with all the parameters of the channels: center
frequencies, datarates, upconversion and downconversion rates,
programming of the shaping filter of the transmitter and the FIR filters
of the receiver, data exchange between the converters and the card
memory, possible combinations of the DDC circuits in the case of

polyphase channel organization e.t.c.

» Configuration of the main memory of the card in respect to the number

of reception and transmission channels selected by the user.

Both the above tasks can be performed using the WaveFormer II
configuration utility. This utility consists of a series of Excel spreadsheets
organized in a hierarchical manner, giving to the user access to all the registers
of the hardware. After the user has chosen all the desirable values, three C
header files are produced, which can be uploaded to the hardware by the user

application.

However, the drawback of the above procedure is that each time one
parameter needs to be modified, the user must open and re-run the utility,
compile and reload the files. Since the author’s belief was that the true value of
the software radio resides on its adaptability, the user should have a maximum
degree of flexibility and should be able to change some parameters “on the fly”.
The flexibility that was decided to be available through the application that would
be developed, was the arbitrary choice of the number of active reception and
transmission channels, center frequencies, datarates and modulation types. All of

the above tasks would be administered solely by software.

63

In order to implement the above, only the DUC and DDC configuration
was decided to be performed with the use of the configuration tool, because it
was fairly complicated and the time restrictions of this thesis prohibited the
implementation of the above functionality in C++. On the other hand, the
organization of the card memory, which would depend on the number of active
channels selected by the user, as well as the administration of the data exchange
between the card and the host computer, would be implemented by the C++

application.

Figures 4-1 to 4-4 show several snapshots of the configuration utility. It
can be clearly seen that a multitude of parameters can be set with this utility.
After all parameters are set, the user returns to the main screen and creates the

header files.

WaveFormer ll Version: R.02 A_

INPUT -
IF INPUT ———— %3 O] ’.—— ComTROL NOTES .
CUNTROL .
4dp " il Build Config Files
Al
Board
PCl Tx
INTERFACE
- _ o~

File Tag: " Default_

View Memory
Map

i

Vendor ID: 0x17D2

TX Device 10 (x0301
IF QUTPUT 4—1 mm CONTROL
o

Baseband

Figure 4-1. Main screen of the WaveFormer configuration Tool.

64

WaveFormer Il

|—| DDC Configuration

Current Channel

Channel 1 - LEVEL

DETECTOR
AJD Data Vi
o W

[23 MHz +- 23 MHz] Order 5 A
A} A}
16 Decimation | 232

NOTE: Any change in CIC Decimation will require a re-commit fitter operation

MNumber of Measurements
for all channels
2 -

0,2906

2,9062
MSPS

MSPS

FILTER
COMPUTE
ENGINE

Figure 4-2. Reception channel configuration screen.

WaveFormer |l A_

irs———

Filter Control

Filter 1 (), Channel 1 of 8 ¥ Auto Scale Cosfs
File Name: shaping_1msps._dat
N User Tap Coefficients
Type Decimation Tap Coefficient Value S ITRIEETE
LT =l 2 1 2 13756600E-04
Symmetry Taps 2 5.57497160E-04 e
- 3 9,30235360E-04
| Even Symmetry ~| | 56 4 1,11401940E-03
5 8.48704860E-04
6 -4, 11147450E-05
7 -1.50049430E-03
Filter Freq. Response 3 -3.15000320E-03
Freq (Hormalized to Nyquist) 9 4.31448170E-03
0 0.2 04 0.6 0.8 1 10 -4,.21147820E-03
] 11 -2, 27163670E-03
0 12 1.51003560E-03
_ \ { 13 6,33891030E-03
8 -0 14 1.06497580E-02
2 0] | 15 1.24721690E-02
£ T — 16 1.00899090E-02
-80 17 2.81679950E-03
100 18 -8,37921650E-03
19 -2 06779920E-02
20 -2,98098920E-02
21 -3.10493100E-02

Figure 4-3. Configuration of one of the filters of the DDC FIR engine.

65

WaveFormer |l A_

AT

|—| Memory Configuration

Channel @ ted MEMORY ALLOCATION
Seven na DUWCGE © Channel Zero AUTOMATIC

13% 12% Channel Memory Slider % |Manual|Final %| kB |Threshold
Channel Zero
Channel Cne
Channel Two
Channel Three
Channel Four
Channel Five
Channel Five Channel Two Channel Six
13% 12% Channel Seven

32, 50%
Unallocated 0 []
Channel Four Channel Three Total Allocated 100] 2621 2]

13% 12%

Channel Six Channel One
13% 12%

PN PN PN P P P P Y
wvi|w(w|w|v|v|vr|r
iy
)
in
[
~
=~
=
&n
=
=

Figure 4-4. Memory organization for the transmission channels.

D. APPLICATION GUI

As we have already mentioned, an application was created by the author
using the Microsoft Visual C++ language. On the top of this application lies a
Graphical User Interface (GUI) which, through a series of screens, lets the user
input all the desired parameters of the communications: number of active

channels, center frequencies, modulation types and datarates.

Figures 4-5 to 4-7 show the basic screens of the application GUI. It

actually consists of three pages:

* Main page: In this page the user chooses the number of active
channels and the location of the configuration file (which has already
been produced by the WaveFormer configuration tool). After
configuring all the features of the active Rx and Tx channels in the
following two pages, the user presses the Start Rx/Tx button and the

card is activated starting the communication. The user can be

66

informed on the status and progress of each active channel, by the

progress bars and text boxes at the lower half of the page.

* Rx channels configuration page. From this page, the user can
define the following parameters for each active Rx channel: center
frequency, modulation type, number of samples per symbol (more

about this later) and location of the file to store the demodulated data.

» Tx channels configuration page. In the same manner as in the
previous page, the user can define the following parameters for each
active Tx channel: center frequency, modulation type, datarate,
location of the file to retrieve the data to be transmitted and
attenuation of the transmitted signal (in terms of its maximum possible

power).

rMain Comms Control Panel @

Main Page | R Channels Corfig || Tx Channels Corfig |

Active Fx Channels Configuration File

“WaveRadiohconfig.w E ettt
Active Tx Channels 2 |
Channels Status
Transmit Channels Receive Channels

Channel #1 Inactive] Channel #1 Inactive —
Channel #2 Inactive | | Channel #2 Inactive —
Channel #3 Inactive C— Channel #3 Inactive)
Channel #4 Inactive C— Channel #4 Inactive C—
Channel #5 Inactive — Channel #5 Inactive —
Channel 86 Inactive C—— Channel 86 Inactive]
Channel #7 Inactive C— Channel #7 Inactive |
Channel #8 Inactive | | Channel #8 Inactive]

[ok |[cencel |

Figure 4-5. Communications Control Panel main page.

67

Main Page | Fx Charnels CO"HQ Tx Channels Conﬁg,l

Channel #1 Channel #2 Channel 23 Channel 24

Frequency (Hz) 10000000 15000000 | [2no00000 | (25000000

Modulation QPsSK s ||8-PSK | |GPSK s | |16PSK v

Samples per Symbol |4 4 4 4

Destination file [WaveRadio\Rx | [D:WaveRadio\Rx |[] [D:WaveRadio\Rx |[) [D:\WaveRadio\R |
Channel #3 Channel #6 Channel #7 Channel #3

Frequency {Hz) (23500000 [||__ETC"_._ | ||“"TIZCC | ||L3€.'ICI?

Modulation QF St QPSK APSK QPsK

Samples per Symbol £ [£ |'—' [

Destination file [D-"WaveRadia\Rx [D:\WaveRadio\R [D:\WaveRadio\R [D:\WaveRadio

Lo« J [Caneal || ook

Figure 4-6. Communications Control Panel Rx channels configuration space.

| Main Page | Fx Channels Config J Ti Channels Corfig

Frequency (Hz)
Modulation
Diata Rate bps)
Source File
Attenuation (dB)

Frequency (Hz)
Modulation
Data Rate bps)

Source File
Attenuation (dB)

Channel #1 Channel 52 Channel 3 Channel #4
[10000000 | [20000000 | [235000 | 23500000
QPSK B-PSK x| laPsK QPSH
[52125 | 212

ToChannel 21 wdf Q TxChannel £2.wdf

[vl

£
=

mool @

LaF
(58125
[mc

Ty

[ok

| [Cancel]

Figure 4-7. Communications Control Panel Tx channels configuration space.

68

E. APPLICATION ARCHITECTURE

In the previous paragraphs we described the user interface of our
application: what the user sees and how he interacts with the application.
However, the quintessence of the code lies on what takes place after the user
has pressed the Start Rx/Tx button: the procedures that were developed in order
to achieve successful communication and data exchange between the
transceiver and the host computer. These procedures are described extensively

in the following paragraphs.

1. Objects

Since the application is purely object oriented, a series of classes were
created, each of them containing all the necessary functionality in order to
achieve specific tasks. The main classes of the application are described in the
following paragraphs. For each object, a table summarizes its main variables and

functions.

WaveRunner. This class encapsulates the functionality of the card. Only
one instance of this class can be created in the application using the Singleton
pattern (Ref. 6). The class also incorporates the objects encapsulating the

functionality of the channels (they will be described later in this paragraph).

Class WaveRunner

Main Variables

Const
maxChannel s Number of maximum available channels
r xCl ockFr equency Frequency of the receiver circuit
t xCl ockFr equency Frequency of the transmitter circuit
bl ockSi ze Size in 4-byte words of a block of data
r xBl ocksPer G oup;
r XG oupsPer Channel ; Reception organization parameters
r xThr eshol dG oups;
r xChannel Si ze;
t xBl ocksPer G oup; } Transmission organization parameters
t XG oupsPer Channel ;

69

t XxThr eshol dG oups;
t xChannel Si ze;
menorySi ze;

| DMAVAddr ess;

| DMApAddr ess;

r xChannel [maxChannel s]
t xChannel [maxChannel s]
r xThr edsRunni ng

t XThr eadsRunni ng

t xChannel sCount ;

r xChannel sCount ;

r xChannel sConfi gur ed;
t xChannel sConfi gur ed;
r xTxEnabl e

} Transmission organization parameters

Size of host computer memory allocated to the
device

Virtual starting address of the allocated memory
Physical starting address of the allocated memory
Array of RxChannel pointers

Array of TxChannel pointers

Number of active reception threads

Number of active transmission threads

Number of selected active transmission channels
Number of selected active reception channels
Number of configured active reception channels
Number of configured active transmission channels
Boolean variable reflecting the status of the card

Main functions

get I nstance()

Open()
Cl ose()

Confi gure()
Enabl eRx()

Di sabl eRx()
Enabl e(Tx)

Di sabl eTx()
Enabl eRxTx()
Di sabl eRxTx()

Creation of one and only new WaveRunner object
using the Singleton pattern

Initial opening of the device

Closing of the device

Configuration of the device

Reception enable (requires configuration first)
Reception disable

Transmission enable (requires configuration first)
Transmission disable

Reception and transmission enable

Reception and transmission disable

Table 4-1.

WaveRunner class description.

The details of the functionality of the WaveRunner class functions will be

described later in this chapter.

WaveRunnerChannel.

This is an abstract class. It contains the main

common parameters of the transmission and reception channels. It is the parent

class which will be inherited to the Tx and Rx channel classes.

70

Class WaveRunnerChannel

Main Variables

channel Nunber ;
channel O f set ;

frequency;

K;

dat aFi | eNane;
dat aRat e;

of f set Addr ess;
dat aBuf f er ;
groupsTr ansf er ed;

gr oupCount ;
t er m nat ePr ocess;

t hr eadRunni ng;
t hr eadReady;

Number of channel (0-7)

Channel offset (used for programming the DUC and
DDC registers)

Channel center frequency

Number of bits per symbol (for M-PSK modulations)
Name of the file to store or retrieve data

Channel datarate (for the Tx channels) or samples
per symbol (for the Rx channels)

Offset address of the DDC or DUC registers.

Pointer to the allocated memory of the channel
Number of transferred groups of data to/from the
transceiver

Counter of the starting position on the channel
memory to transfer data.

Orders the channel thread to be terminated

Indicates if the channel thread is running

Indicates if the channel thread is ready

Main functions

WaveRunner Channel ()

Dummy class constructor. No useful action is

performed.

Table 4-2. WaveRunnerChannel class description.

RxChannel. It stores the functionality of a reception channel. It inherits all

the parameters of the WaveRunnerChannel class.

Class RxChannel

Main variables

gr oupsSaved

| Number of groups saved to the destination file

Main functions

RxChannel ()

set Frequency()

Class constructor. Initializes all the class parameters. Calls
set Frequency() .

Sets the channel center frequency by writing to the
appropriate DDC register.

Table 4-3. RxChannel class description.

TxChannel. It incorporates the functionality of a Tx channel. It also

inherits all the parameters of the WaveRunnerChannel class.

71

Class TxChannel

Main variables

gr oupsLoaded Number of groups loaded from the Tx file.

attenuation Attenuation in dB of the transmitted data
Main functions
TxChannel () Class constructor. Initializes all the class parameters.

set Frequency() | Sets the center frequency of the channel by writing to the
appropriate DUC register
set DataRate() | Sets the datarate of the channel by writing to the
appropriate DUC register.

Table 4-4. TxChannel class description.

Apart from the above classes, the application uses four other classes in
order to implement the GUI. The first one of them is the CommsCitrIDIg class. It
is a CPropertySheet class and serves as the nesting class for the three classes,
CommsTab1, CommsTab2 and CommsTab3. These three classes are of the
CPropertyPage type, each one of them incorporating the functionality of the
corresponding page of the communication control panel. Through a series of text
boxes, combo boxes, property sheets, buttons and message boxes, the above
classes ensure that the user has entered the correct parameters. Also, while the
card is active, the user is informed on the process and status of all the active

channels.

The implementation of these classes constitutes a significant portion of the
application code. However, since their functionality is common C++ functionality
and not directly connected to the subject of this thesis, it was considered better
not to describe them analytically in this text. Their code is included in the listing of

the application code at the appendix of this thesis.

2. Procedures

Hardware initialization (Figure 4-8a). When the application starts, an
object of the WaveRunner class is created. As a part of its initialization code, the

object checks to see if the card is present, by executing the OpenWaveRunner()

72

command from the library. If this is the situation, the hardware initialization takes
place, by executing the WaveRunner::Open() function. The routine initializes the
channel objects, allocates host computer memory and distributes it to the
channel objects, resets the card interrupt register and DMA Transfer register,
resets the DUCs and the DDCs and exits.

After that the application waits for the user to enter the appropriate

parameters and hit the Start Rx/Tx button.

@ Load channel configuration
files
\ V.
Create and initialize For every active Rxor Tx |
. Channel
software objects. "
y Configure Memory areas
Open hardware, (limits, lengths, offsets).
reserve and allocate .
memory for the Configure Data Transfer
channels characteristics (groups size,
groups per memory area etc)
Y L]
Reset DUCs, DDCs, Next Channel
memory buffers and ¥
registers Configure:
- Interrupt Register
Y - Rx and Tx Registers
END -AUTO DMA register

Wait for

configuration End
(a) (b)
Figure 4-8. (a) Hardware initialization procedure. (b) Hardware configuration

procedure.

Hardware configuration (Figure 4-8b). The click of the Start Rx/Tx
button changes its caption to Stop Rx/Tx and invokes the master thread
mainRxTxThread(). The first thing that this thread does, is configure the

73

hardware by invoking the WaveRunner::Configure() function. The sequence of

configuration tasks is the following:

The C header files that have been created using the WaveFormer
configuration tool, are uploaded to the card wusing the

ConfigureWaveRunner() command of the library.

The PCI configuration space is configured with the number of 4-byte
words per data block, using the WriteWRConfigSpace() command

from the library.

For every active transmission and reception channel the following

parameters are defined by writing specific values to the appropriate

registers:
. Starting address of the channel memory.
. Number of data blocks per group of data transfer.
. Number of groups per channel memory area.
. Channel memory area size, starting offset, ending offset and

threshold to raise an interrupt.

. The interrupt mask register is updated in order to permit

interrupts from the specific channel.

. The receive or transmit control register is updated in order to

service the specific channel

The Auto DMA Transfer Register is updated in order to perform data

transfers in the active channel memory spaces.

The card buffers are flushed in order to delete any random data.

Interrupt Service Routine (Figure 4-9a). The application provides useful

behavior to the interrupt service routine by overriding the PMCRadiolsr0() routine

of the WaveRunner library. When an interrupt occurs, this function is called with

the contents of the Interrupt Status Register passed as a parameter. The routine

74

checks to see if the interrupt is due to the transceiver. If this is the situation, it
checks to see if the interrupt is due to a buffer abnormal condition (overflow or
underflow). In this case, it updates the corresponding channel status. Otherwise,
the interrupt is due to a completed data transfer. So, the appropriate channel
event is set (more about this later). As a last step, the routine re-enables the

interrupts and exits.

At this point we need to say that the interrupt service routine must be as
fast as possible, since it is invoked hundreds or even thousands of times per
second. As long as the routine is invoked, additional interrupts are disabled. That
means that data corruption may occur. That is the reason why the routine only
signals the channel servicing routines that they have to take appropriate action. It
is the responsibility of the channel threads to take whatever action they deem

necessary.

Main communication thread (Figure 4-9b). As we have already said, this
thread is launched when the Start Rx/Tx button is pressed. The tasks that this

thread performs are the following:

* It calls the WaveRunner::Configure() function, which performs the

hardware configuration.

* For each active channel, it transfers the parameters chosen by the
user, into the WaveRunner and the channel class variables.

» For every active channel, it launches a corresponding rxThread() or
txThread().

* It waits until all the active channels are ready to transmit or receive.

* It enables the transmission and reception circuitry of the card. More

specifically:
. It enables interrupts by writing a one to the Global Interrupt
Register.

75

It sets the appropriate bits of the Transmit Control and

Receive Control register.

It enables the DMA data transfer, by setting the appropriate
bit of the Auto DMA Register.

* It waits until all the channels are done transmitting or receiving.

» |t disables transmission and reception.

» It notifies the application that the card is no longer transmitting or

receiving.

A

Set appropriate
Channel status

s interrupt due to
the hardware?

Has any problem
occurred?

s a DMA transfer
complete?

No

For every Rx and
Tx Channel

v

Set the appropriate
channel event

v

» Re-enable interrupts

Configure channel
parameters from
input variables

v

Launch channel
thread

v

Next channel

Are all
threads
ready?

No

Yes | Enable Rx and

Tx

Disable Rx and Tx

Are all thread

v

End

(@)

Release
unnecessary
memory

End
(b)

Figure 4-9. (a) Interrupt Service Routine. (b) Main communications thread.

76

We need to say that, at the two occasions when the master thread waits
for the channel threads to signal an event, the signaling is accomplished via the
setting of two events, the allChannelsReady event, in order to signal that all
channels are ready for transmission and reception and the allChannelsDone

event, which signals that all channels are done.

Just before the routine exits, if the user has not disabled reception or
transmission in the meantime, the thread posts a WM_PROCESS_FINISHED
user defined message to the application GUI, in order for the Start Rx/Tx button

caption to return to its original state.

Tx thread (Figure 4-10a). This thread is launched by the master Rx/Tx

thread, once for every active transmission channel.

The first task of the thread is to create the baseband | and Q symbols to
be transmitted, from the data file. It must be noted that the modulation of the data
takes place before and not during the actual transmission. This choice was
dictated by the fact that simultaneous modulation and transmission might slow
the performance of the system. The modulation process will be described

analytically later.

When the modulation is over, the thread fills the channel memory buffer
with the first set of data. Subsequently, it increases the WaveRunner::
threadsReady variable. If it is the last active channel to do so, it notifies the

master thread by setting the allChannelsReady event.

After the above actions, the thread enters a loop, the first stage of which is
a suspension of the thread until the appropriate txBufferEmpty event has been
signaled by the interrupt service routine. The thread wakes up and checks to see

if the event was caused by a buffer underflow error. In this case it simply updates

77

its status with the error and exits. Otherwise, it fills again the appropriate memory

area with data and re-enters the suspended state.

The above loop continues as long as there is more data to transmit and
the user has not cancelled transmission. When either of the two conditions
occurs, the thread clears the memory buffer by writing zeroes to all the memory
range. In this way, the data retrieved by the card until transmission is disabled,
are simply zeroes and nothing is actually transmitted. Subsequently it updates
the channel status, decreases the WaveRunner::threadsRunning variable and
exits. If it is the last channel thread running, just before exiting, it notifies the

master thread by setting the allChannelsDone event.

Rx thread (Figure 4-10b). This thread is launched by the master thread
once for every active reception channel. Its functionality is similar to the

functionality of the transmission thread.

After having created the file to save the received symbols, the thread
increases the WaveRunner:threadsReady variable and, if it is the last active
thread to do so, it notifies the master thread by setting the allThreadsReady

event.

Subsequently, it enters the reception loop. It remains suspended until
notified by the appropriate rxBufferFull event by the interrupt service routine.
When awakened, if the user has not cancelled reception and no buffer overflow
error has occurred, it stores the received symbols from the buffer memory to the

appropriate file and re-enters the suspended state.
When the user stops reception, an rxBufferFull event is set as well. The

loop exits and the stored symbols are demodulated into meaningful data. The

demodulation process will be described analytically later in this chapter.

78

Finally, the thread decreases the WaveRunner::threadsRunning variable,

sets the allChannelsDone event if it is the last active channel thread and exits.

Create File to store
data

as ISR

Read and store
data

signaled an
event?

No

\

Still receiveing?

Yes

Yes

Modulate Data

L]

Fill Tx Buffer with
data

Buffer overflow?

Set channel status

Demodulate Data

|

End

(@)

ore data to
go?
No

Buffer
underflow?

Set channel status

Clear Tx buffer

(b)

Figure 4-10. (a) Tx thread. (b) Rx thread.

F. DATA ORGANIZATION

With the procedures described so far, we have managed to achieve

efficient data exchange between the card buffers and the host computer memory,

as well as successful transmission and reception of symbols. Now it is time to

give meaning to that data. We must organize the data in such a way that the

received samples must be meaningful for the receiver. In other words, we must

devise a protocol of transmission and reception.

79

More specifically, there are two problems which we must deal with, in
order to achieve meaningful communication, phase synchronization and time

synchronization.

It is extremely unlikely that the numerical oscillators of the transmitter and
the receiver will be in phase. Almost certainly, they will have a random phase
difference. Since the communication scheme we have chosen (M-PSK) is
inherently phase coherent, this phase difference must be determined and
corrected. Otherwise, in the decoding of the symbols we shall always be off by

this difference.

Even after we have achieved phase synchronization, we have one more
problem to solve: since in the received signal multiple samples correspond to
each symbol, which is the appropriate time instance or, in other words, which of
the received samples per symbol is the most appropriate one to use for the
signal decoding? Here it must be noted that unlike the conventional receivers
which include an integrator, our receiver consists of successive downsampling
filters. Filters inherently have memory. That means that the first samples of each
symbol depend not only on the current symbol but also on the previous one. So,
we cannot simply average the samples. But even if we could, we should find a
way to know where to start the integration, that is, at which sample each symbol

starts. So, we need time synchronization.

In conventional communication systems, the above tasks are performed
by dedicated carrier and clock recovery circuits, which are most of the times
sophisticated and contribute to the overall complexity of the system. Moreover,
most of the times they are efficient only for one communication scheme and
completely inefficient for all the others. In our case, we shall try to perform the
above two tasks solely by software. Here lies one of the greatest beauties of the
software radio platform, which illustrates in the most profound way how this

architecture contributes to the decrease of hardware complexity.

80

1. Transmitted Data Organization - Modulation

The symbols to be transmitted are organized in packets of 1024 symbols.
Of these 1024 symbols, the first 32 are the header of the packet, while the 992
remaining symbols constitute the actual data. Of course, when transmitting the
data from a file, the last packet will most likely have less than 992 symbols. This

is a fact we have to take into consideration.

The composition of an individual data packet is shown at the table 4-5.

Packet Synthesis
Symbol Position Significance
1-11 Zero phase
(maximum |, zero Q)
12-24 Barker Code
M1111-1-111-11-11]
25-32 Number of symbols in the packet
33-1024 Actual data symbols

Table 4-5. Composition of a transmitted symbols packet.

Initially we transmit 11 samples with zero phase. This can be achieved
very easily by feeding the card with maximum | and zero Q samples. In doing so,
we are hoping that the receiver will detect the constant phase and then correct all

the subsequent packet samples phases accordingly.

After the constant phase samples, we transmit a Barker sequence of 13
symbols. The sequence is transmitted in the | channel, while the Q channel
remains zero. This sequence has excellent autocorrelation properties as shown
in Figure 4-11. In the receiver we are hoping that a correlator will sense the
maximum of the cross correlation of the received signal with the Barker

sequence and thus we shall achieve time synchronization.

81

The following 8 symbols after the Barker sequence denote the number of
symbols per packet. As we have already stated, the number of symbols per
packet may vary. So we need this information, in order to demodulate only the
necessary symbols and not more. Since this piece of information is one of the
most critical parts of the packet, we modulate it always in QPSK regardless of

how complicated the actual data modulation may be.

Autocorrelation of the 13 bit Barker Sequence

Autocorrelation value

-2
-18 -10 -5 0 5 10 15

Figure 4-11. Autocorrelation properties of the 13 bit Barker code.

Finally, the actual data symbols follow, modulated by the scheme chosen
by the user. In our application we restricted the possible modulation schemes to
QPSK, 8-PSK and 16-PSK. It is worth mentioning that for 992 symbols per
packet we need an integer number of bytes for all three schemes (more
specifically, 248 bytes for the QPSK, 372 bytes for the 8-PSK and 496 bytes for
the 16-PSK scheme).

We do not claim that the above packet organization was the most efficient
that we could devise. It was just a simple reasonable scheme that we thought
that would perform reasonably well. Of course our signal would not be

transmitted in extremely noisy or distorting environments and the signal-to-noise
82

ratio would be very large. However, what interested us for this thesis was not to
elaborate on the details but rather to simply prove that the approach works and
that we could achieve with software what conventional systems need dedicated

hardware to achieve.
3. Data Demodulation

The demodulation process is shown in Figure 4-12.

Calculate symbol
power

Advance one
symbol

till more data to
demodulate?

> Phase hits=0

Y

< Load next symbol é—

S phase the Demodulate packet
same? symbols
A
Load packet
Increment phase hits. symbols
A
ase hits Ove Calculate sylintbols per
threshold? No pai ©
Read next 8
Load next 13 symbols
symbols
¥ Yes
Calculate cross orrelation ovel
correlation threshold?

Load next sample

Figure 4-12. Signal demodulation process.

83

The procedure starts by measuring the power of every symbol and
comparing it to a threshold. As long as the actual data transmission has not
started yet, the power will be well below the threshold and the samples will be

considered as noise and will be ignored.

As soon as the symbol power exceeds the threshold, the phase
synchronization loop is started. The phase difference of successive symbols is
compared against a threshold and as long as it is below the threshold, a phase
hit is declared. When a predefined number of hits are achieved (six in our
demonstration) at a power level above the threshold, we consider that we have
detected the transmitted segment with the constant phase. The phase difference
between the transmitter and the receiver numerical oscillators is simply the
phase that we are measuring. All we have to do is to subtract this phase from the
phase of the subsequent symbols and we are done. We have achieved phase

synchronization.

Following the successful synchronization in phase, we slide the received
symbols in a software-implemented correlator, which computes the cross
correlation between the received signal and the Barker code. The moment the
cross correlation exceeds a threshold (12 in our case), we consider that we are
positioned in the beginning of the Barker code in the received signal. So, we

have achieved time synchronization.

When time synchronization has been achieved, we simply advance by 13
symbols and read the next 8 symbols, demodulate them using a QPSK

demodulation scheme and calculate the number of symbols per packet.

What remains to be done, is to successively read and demodulate the
actual data symbols of the packet. After this task has been completed, the whole
procedure is repeated from the beginning for each packet, until the data file runs

out of data.

84

In the above effort to synchronize, we have used several thresholds: a
power threshold, a maximum phase difference threshold, a phase hits threshold
and a cross correlation threshold. The choices of the values of these thresholds
were not based on any sophisticated algorithms; we simply chose values that
seemed reasonable to us. However, it is well understood that in a real
environment where a large signal-to-noise ratio may not be achievable, the
setting of the proper values for these thresholds may become much more
complicated. There may even exist instances that our procedure may not work at
all. However, as we have already mentioned, at this stage we were not so much
interested in elaborating the details but rather in proving that our approach works.

So we kept the detection algorithm relatively simple.

G. CHOICE OF THE PROPER FILTERS

Although the choice of the appropriate filters for the transmitter
interpolation and the receiver decimation stages may seem a trivial task to
perform, it is actually one of the most critical factors for the overall performance
of the system. If the filters are chosen inappropriately, intersymbol interference

may cause errors in the symbol detection even under large signal-to-noise ratios.

For the needs of our application, we chose a square root raised cosine
filter for the transmitter with a cutoff frequency of /4, an interpolation factor of 4
and a roll-off factor varying from 0.25 to 0.10. The frequency response of the filter
for a roll-off factor of 0.15 is shown in Figure 4-13. As we can see, the filter does

not cancel signal aliasing completely (its stopband does not start exactly at /D),

but rather permits it in a controllable way, so that it will be canceled by the filters

of the receiver.

In the receiver, we used a decimation of 16, performed in two stages of 4.
At each stage the signal was filtered by a low pass filter, whose frequency

response is shown in Figure 4-14.

85

Frequency Response of a Square Root Raised Cosine Fifter
50 I I I I I I I I I

-50

-100

Magnitude (dB)

S I T T O T N S S
0 01 0.2 03 04 0.5 06 07 0.8 0.9 1
Mormalized Frequency (=7 rad/sample)

LUt et R R e et e S

000 preesebee g bbb b

Phase (degrees)

-1500 _ g e e e b _ K L SN Nk
]]

-2000 ' ' '
0 01 0.2 03 04 0.5 06 07 0.8 0.9 1
Mormalized Frequency (=7 rad/sample)

Figure 4-13. Frequency response of the transmitter shaping filter.

Frequency Response of the Receiver Decimation Filters

i
'
'
'
'
'
'
P T
'
'
'
'
'
'
[—
'
'
'
'
'
'
T,
]
'
'
'
'
'
[N I ——
]
'
'
'
'
'
'
e m -
'
'
'
'
'
'
[
'
'
'
'
'

'
'
'
'
mmd e
]
'
'
'

Magnitude (dB)
o
]

R I AA LA LA A

Y R T TN NN AN AN S S
0 0.1 02 03 04 05 06 07 08 08 1
Mormalized Frequency (=7 rad/sample)
‘T T T T T T T T
w i i i i i i i i i
R T e S St
L= ' ' 1 1 ' ' ']
Lok 1 1
= : : : : s
@ , : . , , , , ,
g 1000 F---rmyeeeees O Y I e el Sl Sl St Sy
i~ f} f} f} f} f} f} f} f} f}
YOS R S RS RN R AR S T
0 0.1 02 03 04 05 06 07 08 08 1

Mormalized Frequency (=7 rad/sample)
Figure 4-14. Frequency response of the receiver decimation filters.

86

H. FROM HERE ...

In the current chapter we outlined the main aspects of our work and the
functionality of the code we wrote. Now it is time to see the results of the tests we
ran with this code. Did it really work and what results did we get? This is the

subject of the next chapter.

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

V: RESULTS - CONCLUSIONS

A. INTRODUCTION

In the previous chapter we described analytically the application that we
developed and the procedures that are involved in the implementation of the
communication link, both at the hardware management level as well as at the

organization of data in a meaningful protocol.

Now it is the time to see the results of this effort. This chapter will not
present any diagrams and curves, because this was not the nature of our work.
Our result analysis will consist mainly of the presentation of some oscilloscope
shapshots in order to let the reader witness what we saw at the lab and an
insight into the streams of transmitted and received data, in order to prove and

explain that our algorithm worked successfully.

B. TEST BENCH

In order to test and run our application, we set up a test bench in the
microwave lab of the Spanagel building, as shown in Figure 5-1. The
transceivers were hosted into two PC-type personal computers having the

following features:
* Intel Pentium 4 processors at 3.05 GHz with multithreaded technlology

« 512 Mbytes of RAM at 1024 MHz (So that the RAM speed could
closely follow the speed of the processor bus and would cause no less

bottlenecks).

 Two SCSI hard disks with 18 GBytes capacity each (The choice of the
SCSI protocol was imperative, because we wanted to ensure that data

transfers between the computer memory and the hard disks would

89

occur as fast as possible — certainly at a rate compared to the rate of

data transfer between the transceiver and the host computer).

Figure 5-1. Test bench used for the tests of the code.

For each host computer we set up a line of measuring instruments,

consisting of:
» A Tektronix 475 Signal Oscilloscope
* A Tektronix 492 Spectrum Analyzer
A HP 436A Power meter.

* A Wavetek 148 signal generator.
By the end of our experiments, we used the Tektronix TDS 3012B Digital

Oscilloscope — Spectrum Analyzer, in order to capture the oscilloscope images

shown at the next paragraph.

90

C. OSCILLOSCOPE IMAGES

Figures 5-2 to 5-7 show some snapshots of the images of the
oscilloscope. Th upper part of each figure (blue curve) is the signal in the time

domain, while the lower part (red curve) is the signal in the frequency domain.

Initially we generated some simple tones (signal without modulation). This
type of signal can be presented very easily at the oscilloscope screen, because it
is very easy to synchronize. Especially in Figure 5-4, we demonstrate the ease of
creating eight tones (one per transmission channel). At the same time eight

recepton channels may be active in order to receive the signal.

Figures 5-5 to 5-7 show some actual QPSK modulated channels. With a
careful observation of the images, the different phases of the signal can be easily

distinguished. A more thorough analysis of the received waveforms will follow in

the next paragraph.
TeK Stop e

s

5.00mva, | ' M[200ns| A| Ch1 7 5.60mV
Bl Ch1 7 —100uV
Math [20.0dB 5.00MHZ 3+~ —40.0000ns
Figure 5-2. One tone at 4 MHz.

91

Wik 20 0mva | ' M 100ns| A Ch1 4 10.0mV|
Math [20.0 4B 5.00MHZ i+~ [30.0000ns |
Figure 5-3. Four tones at 4, 8, 12 and 16 MHz.

o
~
W
-
=]
=
=
4

G5l 20.0mV% |

Math [20.0dB 5.00MHgZ/ii+v[80.0000ns |

Figure 5-4. Eight tones at 4,8,12,16,20,24,28,32 and 36 MHz.
92

Ch 1 IR
Math [20.0dB 6.25MHZ i+~ [2.00000ns |
Figure 5-5. One QPSK channel at 5 MHz.

M40.0ns| A Ch1 J 5004V

Chil 10.0mva | | M40.0ns| A Ch1 J 400V
QEMY [20.0dB 6.25MHZ i+~ [2.00000ns |

Figure 5-6. Two QPSK channels at 10 and 15 MHz.
93

chil 20.0mva | ' M[40.0ns’ A Ch1 # 400V,

MFAY [20.0dB 6.25MHZ i+~ [2.00000ns |

Figure 5-7. Four QPSK channels at 10, 15, 20 and 25 MHz.

D. DATA WAVEFORMS ANALYSIS

Figure 5-8 shows the first 100 symbols of a transmitted data packet. A
careful observation of the figure reveals the structure of the packet. As we can
see, the symbols have a constant envelope, since they are BPSK (the Barker
code) or QPSK (the number of symbols per packet) modulated. Also, from the
signal phase diagram, the segments intended for the phase synchronization and

the Barker code segment are very easily distinguishable.

Figure 5-9 shows the received waveform before phase synchronization.
As we can easily see, the segment with the steady phase is very easily
recognized. After our code senses this phase and compensates for it, the
waveform that results is shown in Figure 5-10. We can easily see two things, the

phase of the steady-phase segment is now zero and the Barker code is very

94

easily distinguishable. The received waveform now is clearly our transmitted

waveform shaped by the shaping filters.

Baseband Tx Signal
1
(Y S B S 8 B8 OF S 1 B B8 1 B B OF (| SEREEE 1 EEEE EEEE BT BF SEEEREER -F-fe----- e GRRSEECE] EEEEEEEE EECEETEE -
1 1 ' '
1 1 ' '
1 1
= H ! 1
o U ¥
& : ! : ! ! nl : !
Steady Phase : Barker Cdde | iSymbols ger 1 pod sdnbops!
' ' ' ' :Packet ' '
] S RIS S S [o (R R A RS e B I R IO R I B R
4 | I | | | | |
0 5 10 15 20 25 30 35 40 45 50
Symbol Number
Baseband Tx Signal Amplitude
1 < o
1
1
1
3 06 .
=
=
g ooak-t - A AR R A
0.2+ .
1
1
0 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Symbol Number
Baseband Tx Signal Phase
0 ¥ ¥ ¥ ¥ i e ¥
H ! :
— H 1 H H 1 H 1 H
w ' ' ' ' [' 1 '
R S i S R RS I L I A I O I B
= 1 1 ' ' L ' i
@ ' K
=] B 1,
= : i
1 Y EEEEEECRETEATE SEUREEER TR OF PO - e e it Laast =
= il Ll
o H n
= i : i
=R T:1)) AU TR N I N 5 S N N .
E : !
w : 1
: . Poae 1o 0o 8 HOG OO0 LTI
200 1 1 1 l 1] 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Symbol number

Figure 5-8. Transmitted baseband waveform.

Figure 5-11 shows the cross correlation between the waveform of Figure
5-10 and the Barker code. As we can see, at the point of synchronization the
normalized cross-correlation value (cross correlation divided by the signal power)
is very close to its theoretical maximum of 13 (in our case it is 12.5). Also,

nowhere near this value does the cross correlation even approach this peak. It is

95

very easy for the code to sense this peak and declare time synchronization at
this point. Of course, as the Figure 5-11 demonstrates, there may exist large
cross correlation values before the beginning of reception of the actual signal,
due to the random phase of the received signal. However, at that segment the

received power is well below the threshold. So we simply ignore these values.

w10t Received Signal Amplitude
T

Recépllon of L
useful signal sfarts

0 20 40 60 80 100 120 140 160 180 200
Sample Number
Received Signal Phase

A 11051 00 16240161 61 6 1|u|[1|(1|(SEMEIEIEIEED | GRS o el
80 100 120 140 160 180 200
Sample Number
w10t Actual Received Signal
2 T T T T T T T T T
T Y AR S S) |

:||[:||L1

| |
0 20 40 60 80 100 120 140 160 180 200
Sample Number

Figure 5-9. Received Baseband Signal Waveform, before phase difference

compensation.

96

E. TESTS RESULTS

Using the set up described in section B of this chapter, we tried all the
possible modulation schemes for which the code was developed, from simple

test tones to 16-PSK schemes.

10t Received Signal Amplitude

20 40 50 80 100 120 140 160 180 200

Sample Number
Received Signal Phase

200 ; T ;

..................

Random

Phas
% 2

Ll
Jocangier oy é i)
60 a0 100 120 140 160 180 200
Sample Number
x10° Actual Received Signal

0 20 40 60 30 100 120 140 160 180 200
Sample Number

Figure 5-10. Received Baseband Signal Waveform, after phase difference

compensation.

97

At the transmitter the signal was fed to the card at a datarate of 58,125
symbols per second. There it was shaped by the square root raised-cosine filter
described at the previous chapter, interpolated by a factor of 4, transformed into

analog format and transmitted.

% 10° Received Signal Cross Correlation

0 &0 100 150
Sample number

Received Symbols Average Power

10000

8000

6000

4000

2000

0 50 100 150
Sample number

Normalized Cross Correlation

Sample number

Figure 5-11. Cross correlation between the received baseband waveform after

phase correction, and the Barker code.

At the receiver, the signal was initially decimated by the CIC filter by a
factor of 25. This decimation rendered a data throughput of the CIC filter of 3.72
Mbps. Subsequently, the signal was fed into the FIR engine of the DDC and was

98

further decimated by 16 in two stages of 4, using the shaping LPF described also

at the previous chapter.

This procedure gave us a final output rate of 232.5 ksps, which means 4
samples per transmitted symbol. Taking into account the fact that the null-to-null
bandwidth of an M-PSK signal is twice the symbol rate, the bandwidth of our
received signal included the main lobe and the first sidelobe of the transmitted
signal, that is roughly 95% of the transmitted signal power. We might even be
able to reduce the output rate to two samples per symbol by further decimating
the received signal by a factor of 2, but that would need more carefully designed
shaping filters and we might not be able to mitigate the intersymbol interference

completely. So we chose the rate of 4 samples per symbol.

All the simulations gave very good results! Phase and time
synchronization was achieved without problems. The received signal was
demodulated and the transmitted waveform was restored successfully. Even the
last packet of the file, where the number of symbols was less than 992 and we
could not evade rounding effects, was demodulated without problem. So, the

above results confirmed the correctness of our code.

The last issue we have to mention concerns the maximum achievable
datarate of the system. In order to measure it, we activated several channel
combinations from one Tx channel only to all 8 channel pairs working. (Of
course, in this case we were not interested in the correct demodulation of the
received signal, since we had not configured the channel filters properly. We only

wanted to see what would be the maximum datarates that we could achieve).

In every case, we achieved a total datarate between 4.2 Msps and 5.5
Msps before a buffer overflow or underflow occurred. This speed was achieved
using the 32-bit PCl bus of our host computers. The transceivers can also

accommodate 64-bit transfers. The manufacturer claims that the maximum

99

datarate can reach easily 8 Msps. It is quite possible that had we used more

dedicated hosts with 64-bit PCIl buses, we would have achieved these rates.

100

VI: FIELDS FOR FURTHER STUDY

Our thesis demonstrated in a profound way some of the benefits and the
potentials of the Software Defined Radio technology. Complicated functionality,
that until recently required dedicated hardware to be implemented, can now be
very easily implemented solely by software. The communications transceiver has
become more lightweight and generic, while the software has given it the ability
to adapt to a variety of standards and schemes. But perhaps the most important
of all its benefits is the fact the cost of the hardware has been reduced
dramatically. This fact combined with the progress in computer hardware, have
rendered it possible to set up and implement communication systems at a

fraction of the cost we would need until recently.

We do not claim that with this thesis we have exhausted the subject. The
technology is so new and its capabilities are so enormous that we only scratched
the tip of the iceberg. The possibilities for further development using the

hardware we used in our thesis are endless. Just to name some:

e Connection of the hardware to a wireless RF frontend, in order to

achieve wireless communication.

» Addition of a programmable RF frequency upconverter in order to be

able to sweep several frequency bands.

e Addition of error coding to our signal in order to reduce further the

probability of error.

o Study of the system performance in a variety of noise environments

and signal-to-noise ratios.

o Effort to implement a known communications protocol using the

hardware.

* Frequency spectrum measurement and analysis.

101

» Adaptive use of the available spectrum.

The last one of the above fields of study is probably one of the most
interesting application areas of the software radio technology. Since the system
can be used easily for both communication and spectrum measurements, the
communicating parts could implement a protocol in order to analyze the noise
profile of the available spectrum and use it optimally (in other words direct their
power to the least occupied portions of the spectrum). In fact, in another thesis
developed in parallel with this one (Ref. 10), Captain Nikos Apostolou has
established a theoretical background on how this could be achieved. We were
hoping to be able to implement this theory in practice using the hardware, but
unfortunately, due to time restrictions, we did not manage to do so. This would be
probably the most interesting field of study for another student to continue our

work.

As a closing statement of this text, the author like to state once more how
exciting the work on this thesis was. Despite the endless hours of frustration in
the lab, when nothing seemed to be working properly, when the good results
finally showed up, our satisfaction was unparalleled. The ability to control a
sophisticated piece of hardware using a common programming language was
something that has always fascinated the author. Finally, this thesis gave the
author the opportunity to apply in practice a lot of the theory he had learnt in

previous classes, which was a very valuable experience as well.

102

APPENDIX A: CODE LISTING

Table A-1 shows the files of the WaveRadio project and their description.

The listing of the code of these files follows in the next pages.

File Name Description

WaveRadi 0. h Main application classes and the application
WaveRadi o. cpp initialization code.

Mai nFrm h Main and child windows classes and manipulating
Mai nFrm cpp functions.

Chil dFrm h

Chi | dFrm cpp

Chi | dVi ew. h

Chi | dVi ew. cpp

CommsCtrl D g. h
CommsCirl Dl g. cpp

The communications panel main class, hosting the
three panel pages.

CommsTabl. h
CommsTabl. cpp
CommsTab?2. h
CommsTab?2. cpp
CommsTab3. h
ComsTab3. cpp

Classes encapsulating the functionality of the
communication panel pages.

d obal Vars. h

Header file containing global variables that need to
be accessed by all the files of the application.

WaveRunner. h
WaveRunner . cpp

Class containing the functionality of the one and
only WaveRunner object of the application.

WaveRunner Channel . h
WaveRunner Channel . cpp

Abstract class, used as a building block for the
transmission and reception channels.

RxChannel . h Class containing the functionality of the reception
RxChannel . cpp channels.
TxChannel . h Class containing the functionality of the

TxChannel . cpp

transmission channels.

WAaveRunner | sr. cpp

It contains the Interrupt Service Routine, the
master Rx/Tx thread and the individual Rx and Tx
threads.

Modenod. cpp

Contains the modulation and demodulation

routines.

Menory map. h

Maps the WaveRunner registers addresses to
constants, for easier use by the application files.

Prcradi ol . h

Contains the function prototypes of the
WaveRunner library.

Table A-1: WaveRadio project files description.

103

The above listing does not include the resource files of the project, as well
as the library file pntradi o.li b which contains the actual code of the
WaveRunner library functions and must be included in the project, in order for the

code to compile successfully.

WAVERADIO.H

/1 WaveRadi o.h : main header file for the WaveRadi o application
/1
#pragnma once

#ifndef _ AFXWNH

#error include 'stdafx.h' before including this file for PCH
#endi f

#i ncl ude "resource. h" /1 main synbols

/1 CwaveRadi oApp:

/1 See WaveRadi o.cpp for the inplenentation of this class
/1

cl ass CWaveRadi oApp : public CW nApp

{
public:
CwaveRadi oApp() ;
/1 Overrides
public:

virtual BOOL Initlnstance();
virtual int Exitlnstance();

/1 1nplenentation

pr ot ect ed:
HVENU m_hMDI Menu;
HACCEL m hMDI Accel ;

public:
af x_nsg voi d OnAppAbout () ;
af x_nsg void OnFil eNew();
DECLARE_MESSAGE_MAP()
af x_nmsg voi d OnApplicati onsComspanel ();

}s
ext ern CWaveRadi oApp t heApp;

WAVERADIO.CPP

/1 WaveRadi o.cpp : Defines the class behaviors for the application.
/11

#i ncl ude "stdaf x. h"

104

#i ncl ude "WaveRadi 0. h"
#i ncl ude " NMai nFrm h"

#i ncl ude " Chil dFrm h"

#i ncl ude "CommsCtrl Dl g. h"
#i f def _DEBUG

#def i ne new DEBUG _NEW
#endi f

#i ncl ude "WaveRunner. h"

/1 C\WaveRadi oApp

BEG N_MESSAGE _MAP(CWaveRadi oApp, CW nApp)
ON_COWAND(| D HELP_ABQUT, OnAppAbout)
ON_COWAND(| D_FI LE_ NEW OnFi |l eNew)

ON_COMVAND(| D_APPLI CATI ONS_COWWBPANEL, OnAppl i cati onsConmspanel)
END_MESSAGE_MAP()

/1 CWaveRadi oApp construction
CwaveRadi oApp: : CWaveRadi oApp()

{
// TODO add construction code here,

/1 Place all significant initialization in Initlnstance

/1 The one and only CWaveRadi oApp obj ect

CwaveRadi oApp t heApp;
WaveRunner * w =WAveRunner : : get NewaveRunner () ;

/1 CwaveRadi oApp initialization

BOOL CWaveRadi oApp:: I nitlnstance()

{
int error=w->Cpen();
if (error)
{
CString disp;

di sp. Format ("Error: 9%d\ nWaveRunner card coul d not be
opened.\n Process will abort.",error);
Af xMessageBox(di sp, MB_OK 0);
//return FALSE;
}
/1 1nitCommonControls() is required on Wndows XP if an
application
/1 mani fest specifies use of ComCtl|32.dll version 6 or later to
enabl e
/1l visual styles. OQherw se, any wi ndow creation will fail.
I ni t CommonControl s();

CW nApp: : I nitlnstance();

/1 Initialize OLE |libraries

105

if (1AfxOelnit())

Af xMessageBox(1 DP_OLE | NI T_FAI LED) ;
return FALSE;

}

Af xEnabl eCont r ol Cont ai ner () ;

/1 Standard initialization

/1 1f you are not using these features and wi sh to reduce the
si ze

/1 of your final executable, you should renove fromthe follow ng

/1 the specific initialization routines you do not need

/1 Change the registry key under which our settings are stored

/1 TODQO You should nodify this string to be sonething
appropriate

/1 such as the nanme of your conpany or organization

Set Regi stryKey(_T("Local AppW zard- Generated Applications"));

/1l To create the main wi ndow, this code creates a new frane
wi ndow

/1 object and then sets it as the application's main w ndow
obj ect

CMVDI FraneWhd* pFrame = new CMai nFr ane;

m _pMai nWwhd = pFr ane;

/1 create main MDI frame w ndow

i f (!pFrame->LoadFrane(| DR_MAI NFRAME))

return FALSE;

/1 try to load shared MDI nenus and accel erator table

/1 TODO. add additional nenber variables and |oad calls for

/1 addi ti onal nmenu types your application may need

HI NSTANCE hl nst = Af xGet Resour ceHandl e() ;

m _hMDI Menu = :: LoadMenu(hl nst,
MAKEI NTRESCURCE(| DR_WaveRadi oTYPE)) ;

m hMDI Accel = ::LoadAccel erators(hlnst,
MAKEI NTRESOURCE(| DR_WaveRadi oTYPE)) ;

/1 The main w ndow has been initialized, so show and update it

pFr ame- >ShowwW ndow(m_nCndShow) ;

pFr ame- >Updat eW ndow() ;

return TRUE

/1 CWaveRadi oApp nessage handl ers

i nt CWaveRadi oApp: : Exi t I nst ance()
{

/1 TODO. handl e additional resources you nay have added
i f(wr->cardStatus==0)

{
int error=w->C ose();
if (error)
CString disp;

di sp. Format ("Error: %d\ nWaveRunner card coul d not be
cl osed. ", error);

}

Af xMessageBox(di sp, MB_OK 0);

106

del ete wr;
if (mhMI Menu !'= NULL)
Fr eeResour ce(m hMDI Menu) ;
if (m_hMDI Accel != NULL)
FreeResour ce(m hMDI Accel) ;

return CW nApp: : Exitlnstance();

voi d CWaveRadi oApp: : OnFi | eNew()
{
CMai nFrame* pFrame = STATI C_DOANCAST(CVvai nFrame, m pMai n\Wd) ;
/1l create a new MDI child wi ndow
pFr ane- >Cr eat eNewChi | d(
RUNTI ME_CLASS(CChi | dFrane), | DR WaveRadi oTYPE, m hMDI Menu,
m_hMDI Accel) ;

}

/1 CAbout Dl g dial og used for App About

class CAboutDi g : public CDi al og

{
public:
CAbout Dl g() ;

/1 Dialog Data
enum { 1DD = | DD_ABOUTBOX };

pr ot ect ed:
virtual void DobDat aExchange(CDat aExchange* pDX); /1 DDX/ DDV
support

/1 1nplenentation

pr ot ect ed:
DECLARE_MESSAGE_MAP()

1

CAbout DI g: : CAbout Dl g() : CDi al og(CAbout Dl g: : | DD)
{
}

voi d CAbout Dl g: : DoDat aExchange(CDat aExchange* pDX)
{

}

BEG N_MESSAGE_MAP(CAbout DI g, CDi al og)
END_MESSAGE_MAP()

CDi al og: : Dobat aExchange(pDX) ;

/1 App command to run the dial og
voi d CW\aveRadi 0App: : OnAppAbout ()
{

CAbout DI g about Dl g;

about D g. DoMbdal () ;

107

/1 CWaveRadi oApp nmessage handl ers

voi d CWaveRadi oApp: : OnAppl i cati onsConmmrspanel ()

/1 TODO Add your command handl er code here
CComsCtrl Dg commsCtrl Dl g("Main Conms Control Panel");
commsCtr | DI g. DoModal () ;

}

MAINFRM.H

I/ MainFrmh : interface of the CMii nFrane cl ass
/1

#pragnma once
cl ass CMai nFranme : public CMVDI FraneWhd

{
DECLARE_DYNAM C(CMai nFr ane)
public:
CMai nFrame() ;
/1 Attributes
public:
/1 Operations
public:
/1 Overrides
public:

virtual BOOL PreCreat eW ndow CREATESTRUCT& cs);

/1 1nplenentation
public:
virtual ~CwMai nFrame();
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunmp(CDunpContext& dc) const;
#endi f

protected: // control bar enbedded nenbers
CSt atusBar m wndSt at usBar
CTool Bar m wndTool Bar

/'l Generated nessage nap functions

pr ot ect ed:
af x_nsg i nt OnCreat e(LPCREATESTRUCT | pCreateStruct);
DECLARE_MESSAGE_MAP()

b
MAINFRM.CPP
/1 MainFrmcpp : inplementation of the CMainFrane class

108

11

#i ncl ude "stdaf x. h"
#i ncl ude "WaveRadi o. h"

#i ncl ude " Mai nFrm h"

#i fdef _DEBUG

#defi ne new DEBUG NEW

#endi f

/1 CMai nFrane

| MPLEMENT_DYNAM C(CMai nFr ame, CNMDI Fr aneWhd)

BEG N_MESSAGE MAP(CMai nFrame, CMDI Fr aneWhd)
ON_ VWM CREATE()

END_MESSAGE_MAP()

static U NT indicators[] =

{
| D_SEPARATOR, /1 status line indicator
| D_I NDI CATOR_CAPS,
| D_I NDI CATOR_NUM
| D_I NDI CATOR_SCRL,
s

/1 CMai nFranme construction/destruction
CMai nFr ane: : CMai nFr ane()

// TODO add nenber initialization code here
}

CMai nFrane: : ~CVvai nFrane()

{
}

i nt CMai nFrane: : OnCr eat e(LPCREATESTRUCT | pCreat eStruct)

{
if (CVDI FrameWhd: : OnCreat e(l pCreateStruct) == -1)

return -1;

if (!mwndTool Bar. Creat eEx(this, TBSTYLE_FLAT, W5 CHI LD |
W5 VI SIBLE | CBRS _TOP
| CBRS GRIPPER | CBRS TOOLTIPS | CBRS_FLYBY |
CBRS_SI ZE DYNAM C) ||
I'm wndTool Bar. LoadTool Bar (| DR_MAI NFRAME))

TRACEO("Failed to create tool bar\n");
return -1; /1l fail to create

}

if (!mwndStatusBar.Create(this) ||
109

I'm wndSt at usBar . Set | ndi cat or s(i ndi cators,
si zeof (i ndi cators)/sizeof (U NT)))

TRACEO("Failed to create status bar\n");
return -1; /] fail to create

/1 TODO Delete these three lines if you don't want the tool bar
to be dockabl e

m wndTool Bar . Enabl eDocki ng(CBRS_ALI GN_ANY) ;

Enabl eDocki ng(CBRS_ALI GN_ANY) ;

DockCont r ol Bar (&m wndTool Bar) ;

return O;
}
BOOL CMai nFrane: : PreCr eat eW ndow CREATESTRUCT& cs)
{
i f(!CVDIFrameWhd: : PreCr eat eW ndow(cs))
return FALSE;
[TODO Modify the Wndow class or styles here by nodifying
/1 the CREATESTRUCT cs
return TRUE;
}

/1 CMai nFrane di agnostics

#i f def _DEBUG
voi d CMai nFrane: : AssertValid() const

{
CMVDI FraneWhd: : Assert Val i d();
}
voi d CMai nFrane: : Dunp(ChunpCont ext & dc) const
{
CMVDI Fr aneWhd: : Dunp(dc) ;
}

#endi f // _DEBUG

/1 CMai nFranme nmessage handl ers

CHILDFRM.H
// ChildFrmh : interface of the CChil dFrame cl ass
/1

#pragnma once
#i ncl ude " Chil dVi ew. h"

class CChil dFrane : public CVDI Chil dWhd

{
DECLARE_DYNCREATE(CChi | dFr ane)

110

public:
CChi | dFr ane() ;

/] Attributes
public:

/1 Operations
publi c:

[l Cverrides

public:

virtual BOOL PreCreat eW ndow CREATESTRUCT& cs);

virtual BOOL OnCndMsg(U NT nl D, int nCode, void* pExtra,
AFX_CVDHANDLERI NFO* pHandl er | nf 0) ;

/1 1nplenentation
public:
/1 view for the client area of the frane.
CChi | dVi ew m wndVi ew,
virtual ~CChil dFrane();
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunp(CDunpContext& dc) const;
#endi f

/'l Generated nessage nap functions
pr ot ect ed:
af x_nsg void OnFil ed ose();
af x_nsg voi d OnSet Focus(Cwd* pd dwWhd) ;
af x_nmsg i nt OnCreat e(LPCREATESTRUCT | pCreateStruct);
DECLARE_INESSAGE_NMAP()

}s

CHILDFRM.CPP

/1 ChildFrmcpp : inplenentation of the CChil dFranme class
/1

#i ncl ude "stdafx. h"

#i ncl ude "WaveRadi o. h"

#i ncl ude "Chil dFrm h"

#i f def _DEBUG

#def i ne new DEBUG _NEW

#endi f

[/ CChil dFr ane

| MPLEMENT _DYNCREATE(CChi | dFr ane, CNDI Chi | dWhd)

BEG N_MESSAGE_MAP(CChi | dFranme, CMDI Chi | dwhd)
ON_ COWAND(I D FILE CLOSE, OnFil ed ose)
ON_WM SETFOCUS()

ON_WM _CREATE()
END_MESSAGE_MAP()

111

/1 CChil dFrane construction/ destruction

CChi | dFr ane: : CChi | dFr ane()

{
// TODO add nmenber initialization code here
}
CChi | dFr ane: : ~CChi | dFrame()
{
}

BOOL CChi | dFrane: : PreCr eat eW ndow(CREATESTRUCT& cs)

/1 TODO Modify the Wndow class or styles here by nodifying the
CREATESTRUCT cs
i f(!CMDI Chil dwhd: : PreCreat eW ndow(cs))
return FALSE;

cs. dwexStyl e & ~W5 EX CLI ENTEDGE;

cs. |l pszC ass = Af xRegi st erwhdd ass(0);
return TRUE;

/1 CChil dFrame di agnostics

#i f def _DEBUG
voi d CChil dFrame: : AssertValid() const

{
CMVDI Chi | dWhd: : Assert Val i d();
}
voi d CChi |l dFrame: : Dunp(CDunpCont ext & dc) const
{
CMDI Chi | dWhd: : Dunp(dc);
}

#endi f // _DEBUG

/1 CChil dFrame nmessage handl ers
voi d CChil dFrame:: OnFi |l eCl ose()

/1 To close the frame, just send a WM CLOSE, which is the
equi val ent

/1 choosing close fromthe system nenu.

SendMessage(VW CLCSE) ;

}
i nt CChil dFrane: : OnCr eat e(LPCREATESTRUCT | pCreat eSt ruct)
if (CVDIChil dWd::OnCreate(l pCreateStruct) == -1)
return -1;

/1l create a view to occupy the client area of the frane

112

if (!mwndVi ew. Create(NULL, NULL, AFX WS DEFAULT VI EW
CRect (0, 0, 0, 0), this, AFX_|DWPANE_FIRST, NULL))

TRACEO("Failed to create view wi ndow n");

return -1;

}

return O;
}
voi d CChi | dFrane: : OnSet Focus(CWhd* pd dwhd)
{

CMDI Chi | dWhd: : OnSet Focus(pd dwhd) ;

m wndVi ew. Set Focus() ;
}

BOOL CChi | dFrane: : OnCmdMsg(Ul NT nI D, int nCode, void* pExtra,
AFX_CNVDHANDLERI NFO* pHandl er | nf o)

{

/1 let the view have first crack at the conmand

if (mwndVi ew. OnCmdMsg(nl D, nCode, pExtra, pHandl erlnfo))

return TRUE;

/1 otherw se, do default handling

return CMVDI Chil dWhd: : OnCnmdMsg(nl D, nCode, pExtra, pHandl erlnfo);
}
CHILDVIEW.H

[/ ChildView.h : interface of the CChildView cl ass
/1

#pragnma once

// CChil dVi ew wi ndow

class CChildView : public Cwd

{
/1 Construction
public:

CChi | dVi ew() ;

/Il Attributes
publi c:

/1 Operations
public:

/1 Cverrides
pr ot ect ed:
virtual BOOL PreCreat eW ndow(CREATESTRUCT& cs) ;

/1 1 nplenmentation
publi c:

113

virtual ~CChildView);

/'l Generated nessage nmap functions
pr ot ect ed:
af x_nmsg void OnPaint();
DECLARE_MESSAGE_MAP()
1

CHILDVIEW.CPP

/1 ChildView cpp : inplenentation of the CChil dView class
/1

#i ncl ude "stdaf x. h"
#i ncl ude "WaveRadi o. h"
#i ncl ude " Chil dVi ew. h"

#i f def _DEBUG
#def i ne new DEBUG _NEW
#endi f

/[CChil dVi ew

CChi | dVi ew: ; CChi | dVi ew()

{
}

CChi | dVi ew: ; ~CChi | dVi ew()

{
}

BEG N_MESSAGE_MAP(CChi | dVi ew, CWd)
ON_WM_PAI NT()
END_MESSAGE_MAP()

/1 CChil dVi ew nessage handl ers
BOOL CChi | dVi ew: : PreCr eat eW ndow(CREATESTRUCT& cs)

if (!CwWhd:: PreCreat eWndow(cs))
return FALSE;

cs. dwExStyl e | = W5_EX CLI ENTEDGE;
cs.style & ~W5 BORDER;
cs.l pszCQ ass =
Af xRegi st er WidCl ass(CS_HREDRAW CS VREDRAW CS_DBLCLKS,
:: LoadCur sor (NULL, | DC_ARROW ,
reinterpret_cast <HBRUSH>(COLOR_W NDOM-1), NULL);

return TRUE;
}

voi d CChil dVi ew : OnPai nt ()
114

CPai nt DC dc(this); // device context for painting
/1 TODO Add your nessage handl er code here

/1 Do not call CWAd:: OnPaint() for painting nessages

COMMSCTRLDLG.H

#pragnma once

#i ncl ude "waver unner. h"
#i ncl ude "CommsTabl. h"
#i ncl ude " CommsTab2. h"
#i ncl ude " CommsTab3. h"

/1 CCommsCirl Dl g

class CComsCtrlI D g : public CPropertySheet

{
DECLARE_DYNAM C(CCommsCt r| DI g)

publi c:
CComsTabl commsTabl;
CComsTab2 commsTab2;
CComsTab3 commsTab3;

CComsCtrl Dl g(Ul NT nl DCapti on, Cwhd* pParent Whd = NULL, U NT
i Sel ect Page = 0);

CComsCt rl Dl g(LPCTSTR pszCaption, Cwd* pParent Wd = NULL, U NT
i Sel ect Page = 0);

virtual ~CCommsCirl D g();

af x_nmsg void OnC ose();

pr ot ect ed:
DECLARE_MESSAGE_MAP()
b

COMMSCTRLDLG.CPP

/1 ComsCirl Dl g.cpp : inplenentation file
/1

#i ncl ude "stdafx. h"

#i nclude "ComsCirl D g. h"

/1 CCommsCtrl D g

| MPLEMENT _DYNAM C(CCommsCtrl Dl g, CPropertySheet)

CComsCtrl Dl g:: CComrsCtr| Dl g(Ul NT nl DCapti on, CWwhd* pParent Whd, U NT

i Sel ect Page)
: CPropertySheet (nl DCapti on, pParentWhd, i Sel ect Page)
{

115

}

CComsCtrl Dl g:: CComrsCtr| DI g(LPCTSTR pszCapti on, Cwhd* pParent Whd, U NT
i Sel ect Page)
: CPropertySheet (pszCapti on, pParentWhd, i Sel ect Page)

{
AddPage(&ommsTabl) ;
AddPage(&commsTab?2) ;
AddPage(&conmsTab3) ;
for (int channel =0; channel <8; channel ++)
{
r xChannel | nf o[channel]. f r equency=0;
r xChannel I nf o[channel] . k=0;
r xChannel | nf o[channel] . dat ar at e=0;
rxChannel | nf o[channel].fil eName="";
t xChannel | nf o[channel]. frequency=0;
t xChannel | nf o[channel] . k=0;
t xChannel | nf o[channel] . dat ar at e=0;
t xChannel | nf o[channel].fil eNane="";
}
}
CCommsCtrl Dl g:: ~CCommsCt r| Dl g()
{
}
void CCommsCtrl Dl g:: OnC ose()
{
i f (w->rxTxEnabl e)
{
CString disp;
di sp="Cannot cl ose panel while channels are active!"
Af xMessageBox(di sp, MB_OK, 0);
}
el se
{
CPropert ySheet: : OnCl ose();
}
}

BEG N_MESSAGE MAP(CCommsCtr | DI g, CPropertySheet)
END_MESSAGE_MAP()

/1 CCommsCtrl Dl g nmessage handl ers

COMMSTAB1.H

#pragma once
#i ncl ude "Resource. h"

/1 CCommsTabl dial og
cl ass CCommsTabl : public CPropertyPage

{
116

DECLARE_DYNAM C(CConmsTab1)

publi c:
CComsTabl();
virtual ~CCommsTabl();

/1 Dialog Data
enum { 1 DD = | DD_COWSTABL };

pr ot ect ed:
virtual voi d DoDat aExchange(CDat aExchange* pDX);
support

DECLARE_NMESSAGE_MAP()
public:
CEdit* configFile;
CComboBox* t xComnbo;
CConboBox* rxConbo;
CButton* rxButton;
CBut t on* txButton;
CBut t on* rxTxButton;

bool rxTxRunni ng;

virtual BOOL OnlnitDial og();

af x_nsg voi d OnCbnSel changeRxchannel sconbo() ;
af x_nsg voi d OnChnSel changeTxchannel sconbo() ;
af x_nsg void OnBnd i ckedDf gfil efind();
virtual BOOL OnSet Active();

af x_msg void OnBnd i ckedRxenabl ebutton();

af x_nsg voi d OnBnd i ckedTxenabl ebutton();
virtual void OnCK();

af x_nsg voi d OnBnd i ckedRxt xenabl ebutt on();

/| DDX/ DDV

LRESULT OnThr eadsFi ni shed(WPARAM wpar am LPARAM | param ;

COMMSTAB1.CPP

/1 ComsTabl.cpp : inplenentation file
/1

#i ncl ude "stdaf x. h"

#i ncl ude "af xnt. h"

#i ncl ude "direct.h"

#i nclude "ComsCtrl D g. h"
#i ncl ude "CommsTabl. h"

#i ncl ude " RxChannel . h"

#i ncl ude " TxChannel . h"

/1 CConmmsTabl di al og
| MPLEMENT_DYNAM C(CConmsTabl, CPropertyPage)

CConmsTab1l: : CConms Tabl1()
CPr opert yPage(CCommsTabl: : | DD)
{

117

}
CComsTabl: : ~CComsTabl()

{
}
voi d CConmmsTabl: : DoDat aExchange(CDat aExchange* pDX)
{
CPr opert yPage: : DoDat aExchange(pDX) ;
}

BEG N_MESSAGE_MAP(CComrsTabl, CPropertyPage)
ON_CBN_SEL CHANGE(| DC_RXCHANNEL SCOVBO,
OnCbnSel changeRxchannel sconbo)
ON_CBN_SEL CHANGE(| DC_TXCHANNEL SCOVBO,
OnCbnSel changeTxchannel sconbo)
ON_BN_CLI CKED(| DC_CFGFI LEFI ND, OnBnd i ckedDf gf i | ef i nd)
ON_BN_CLI CKED(| DC_RXTXENABLEBUTTON, OnBnCl i ckedRxt xenabl ebut t on)
ON_MESSAGE(WM _PROCESSES_FI NI SHED, OnThr eadsFi ni shed)
END_MESSAGE_MAP()

/1 CConmmsTabl nmessage handl ers

BOCOL CConmsTabl:: OnlnitDial og()
{
CPropertyPage: : Onl nit Di al og();
r xTxRunni ng=f al se;
configFile = (CEdit*) GetD glten{lDC_CFGFILE);
confi gFi | e- >Set W ndowText (" D: \\ WaveRadi o\ \ confi g. wef");

sprintf(w->configFile, "config.wef");
sprintf(w->configPath, "D:\\WaveRadi 0");

rxCombo = (CConboBox*) GetDl gltenm | DC_RXCHANNELSCOVBO) ;
t xConbo = (CConboBox*) Get Dl glten(| DC_TXCHANNELSCOVBO) ;
rxTxButton = (CButton*) GetD glten(| DC_RXTXENABLEBUTTOQON);

CString str;
for (int i=0; i<9; i++)
{

str.Format (_T("%"),i);
r xCombo- >AddSt ri ng(str);
t xConbo- >AddStri ng(str);

}
t xChannel Status[0].status=(CEdit*) GetD gltem(| DC_TX1STATUS);
t xChannel St at us[0] . pr ogress=(CProgressCtrl *)

Get Dl gl t em(| DC_TX1PROGRESS) ;
t xChannel Status[1].status=(CEdit*) GetD gltem(| DC_TX2STATUS);
t xChannel St at us[1] . progress=(CProgressCrl *)

CGet Dl gl t en{ | DC_TX2PROGRESS) ;
t xChannel Status[2].status=(CEdit*) GetD glten(| DC TX3STATUS);
t xChannel St at us[2] . progress=(CProgressCirl *)

Get Dl gl t en(| DC_TX3PROGRESS) ;
t xChannel Status[3].status=(CEdit*) GetD gltem(| DC_TX4STATUS);
t xChannel St at us[3] . progress=(CProgressCrl *)

Get Dl gl t em(| DC_TX4PROGRESS) ;

118

t xChannel Status[4].status=(CEdit*) GetD gltenm(| DC_TX5STATUS);
t xChannel St at us[4] . progress=(CProgressCirl *)
Get Dl gl t em(| DC_TX5PROGRESS) ;
t xChannel St at us[5] .status=(CEdit*) GetD gltem(| DC_TX6STATUS);
t xChannel St at us[5] . progress=(CProgressCrl *)
Get Dl gl t en{ | DC_TX6PROGRESS) ;
t xChannel St atus[6] .status=(CEdit*) GetD gltem| DC_TX7STATUS);
t xChannel St at us[6] . pr ogress=(CProgressCirl *)
Get Dl gl t em(| DC_TX7PROGRESS) ;
t xChannel Status[7].status=(CEdit*) GetD gltem(| DC_TX8STATUS);
t xChannel St at us[7] . progress=(CProgressCrl *)
Get Dl gl t em(| DC_TX8PROGRESS) ;
rxChannel Status[0] . status=(CEdit*) GetDl glten{lDC_RXLSTATUS);
r xChannel St at us[0] . progress=(CProgressCtrl *)
Get Dl gl t em(| DC_RX1PROGRESS) ;
rxChannel Status[1] . status=(CEdit*) GetDl glten{| DC _RX2STATUS);
r xChannel St at us[1] . progress=(CProgressCtr| *)
Get Dl gl t em(| DC_RX2PROGRESS) ;
rxChannel Status[2] .status=(CEdit*) GetDl glten(lDC_RX3STATUS);
rxChannel St at us[2] . progress=(CProgressCrl *)
CGet Dl gl t en{ | DC_RX3PROGRESS) ;
rxChannel St atus[3] . status=(CEdit*) GetDl glten{|DC RX4STATUS);
r xChannel St at us[3] . progress=(CProgressCrl *)
Get Dl gl t em(| DC_RX4PROGRESS) ;
rxChannel Status[4] .status=(CEdit*) GetDl glten(|DC RX5STATUS);
r xChannel St at us[4] . progress=(CProgressCrl *)
Get Dl gl t em(| DC_RX5PROGRESS) ;
rxChannel St at us[5] . status=(CEdit*) GetDl glten{lDC_RX6STATUS);
r xChannel St at us[5] . progress=(CProgressCrl *)
Get Dl gl t en(| DC_RX6PROGRESS) ;
rxChannel St at us[6] . status=(CEdit*) GetDl glten{|DC _RX7STATUS);
r xChannel St at us[6] . progress=(CProgressCtrl *)
Get Dl gl t em(| DC_RX7PROGRESS) ;
rxChannel Status[7] .status=(CEdit*) GetDl glten(lDC_RX8STATUS);
rxChannel St at us[7] . progress=(CProgressCrl| *)
Get DI gl t en{ | DC_RX8PROGRESS) ;
for (int channel =0; channel <8; channel ++)
{
t xChannel St at us[channel] . st at us- >Set W ndowText ("I nacti ve");
t xChannel St at us[channel]. pr ogr ess- >Set Range(0, 100) ;
t xChannel St at us[channel]. progress->Set Pos(0);
r xChannel St at us[channel] . st at us- >Set W ndowText ("1 nactive");
r xChannel St at us[channel]. progr ess->Set Range(0, 100) ;
r xChannel St at us[channel]. pr ogr ess- >Set Pos(0) ;

}
r xCombo- >Set Cur Sel (0) ;
t xConbo- >Set Cur Sel (0) ;

// TODO Add extra initialization here

return TRUE; // return TRUE unless you set the focus to a
control

/1 EXCEPTION. OCX Property Pages should return FALSE
}

voi d CComsTabl: : OnCbnSel changeRxchannel sconbo()
{

119

/1 TODO Add your control notification handler code here
wr - >r xChannel sCount =r xConbo- >Get Cur Sel () ;
i f (w->rxChannel sCount >0)

i f (wr->rxChannel sCount >wr - >r xChannel sConfi gur ed)

{
CString disp;
di sp. Format ("Rx Channels % - % not configured.",

wr - >r xChannel sConfi gur ed+1, wr -
>r xChannel sCount) ;

Af xMessageBox(di sp, MB_ K 0);

}

i f ((wr->rxChannel sCount +w - >t xChannel sCount >0)
& (wr->rxChannel sCount <=wr - >r xChannel sConfi gur ed)
& (wr->t xChannel sCount <=wr - >t xChannel sConfi gured))

{

r xTxBut t on- >Enabl eW ndow(t rue);
}
el se
{ .

r xTxBut t on- >Enabl eW ndow(f al se) ;
}

voi d CCommsTabl:: OnCbnSel changeTxchannel scombo()

{
/1 TODO Add your control notification handler code here
wr - >t xChannel sCount =t xConbo- >Get Cur Sel () ;
i f (w->txChannel sCount >0)

{

i f (wr->txChannel sCount >wr - >t xChannel sConfi gur ed)

{
CString disp;
di sp. Format (" Tx Channels % - % not configured.",

wr - >t xChannel sConfi gur ed+1, wr -
>t xChannel sCount) ;

Af xMessageBox(di sp, MB_OK, 0);

}

i f ((wr->rxChannel sCount +wr - >t xChannel sCount >0)
& (wr->r xChannel sCount <=wr - >r xChannel sConf i gur ed)
& (wr - >t xChannel sCount <=wr - >t xChannel sConf i gur ed))

{

r xTxBut t on- >Enabl eW ndow(t rue);
}
el se
{

r xTxBut t on- >Enabl eW ndow(f al se) ;
}

voi d CConmsTabl:: OnBnCl i ckedDf gfi | efi nd()

/1 TODO Add your control notification handler code here

120

LPCSTR filefilter="WaveRunner Configuration files\0O *. WCF\0 Al
files\O *.*\0";

CFrileDi alog filefind(true);

filefind.mofn.lpstrTitle="Configuration file to retrieve";

filefind. mofn.| pstrDef Ext="WCF"

filefind.mofn.lpstrFilter=filefilter

if (filefind. DoMbdal () ==I DOK)

{
confi gFi | e- >Set W ndowText (fil ef i nd. Get Pat hName()) ;
Cstring buffer=filefind. GetFil eNane();
for (int letter=0; letter<buffer.GetLength(); |etter++)
{
wr->configFile[letter]=buffer[letter];
}
wr->configFile[letter]=0;
int fileLength=buffer. GetLength();
buf fer=filefind. Get Pat hName() ;
i nt pathLengt h=buffer. GetLength()-fil eLength-1;
i nt pos=0;
for (int letter=0; letter<pathLength; |etter++)
{
wr - >confi gPat h[pos] =buffer[letter];
pos++;
if (buffer[letter]==92)
{
wr - >conf i gPat h[pos] =92;
pos++;
}
}
wr - >conf i gPat h[pos] =0;
}
}
BOOL CCommrsTabl:: OnSet Acti ve()
{
/1 TODO Add your specialized code here and/or call the base
cl ass

i nt channel sCount, channel sConfi gur ed,;
channel sCount =wr - >t xChannel sCount +w - >r xChannel sCount ;
channel sConf i gur ed=wr - >t xChannel sConf i gur ed+wr -
>r xChannel sConfi gur ed;
i f (channel sCount >0)

{
i f (channel sCount >channel sConfi gur ed)
{
CString disp;
di sp. Format (" Sone Channels are not configured.");
Af xMessageBox(di sp, MB_OK, 0);
r xTxBut t on- >Enabl eW ndow(f al se) ;
}
el se
{
r xTxBut t on- >Enabl eW ndow(true);
}
}
el se
{

121

r xTxBut t on- >Enabl eW ndow(f al se) ;

}
return CPropertyPage:: OnSet Active();

voi d CCommsTabl: : OnBnd i ckedRxt xenabl ebut t on()

{
/1 TODO Add your control notification handler code here

if (!rxTxRunni ng)

{
r xTxBut t on- >Enabl eW ndow(f al se) ;
t xConbo- >Enabl eW ndow f al se) ;
r xConmbo- >Enabl eW ndow(f al se) ;
wr - >r xTxEnabl e=t r ue;
r xTxRunni ng=t r ue;
Af xBegi nThr ead(mai nRxTxThr ead, t hi s) ;
r xTxBut t on- >Set W ndowText (" Stop Rx/ Tx");
r xTxBut t on- >Enabl eW ndow(t rue);
}
el se
{

r xTxBut t on- >Enabl eW ndow(f al se) ;
wr - >r XTxEnabl e=f al se;
for (int channel =0; channel <wr ->rxChannel sCount; channel ++)

{
}

for (int channel =0; channel <wr ->t xChannel sCount; channel ++)

rxBuf fer Ful | [channel]. Set Event () ;

t xBuf f er Enpt y[channel] . Set Event () ;
}
MSG nessage;
unsi gned short threadsRunni ng=0;
whi | e(t hr eadsRunni ng>0)
{
if (::PeekMessage(&nressage, NULL, 0, 0, PM REMOVE))
{
.. Transl at eMessage(&ressage) ;
. . Di spat chMessage(&ressage) ;

t hr eadsRunni ng=wr - >r xThr eadsRunni ng+wr -

>t xThr eadsRunni ng;

}

t xConbo- >Enabl eW ndow(t r ue) ;

r xConmbo- >Enabl eW ndow(true);

r xTxBut t on- >Set W ndowText ("Start Rx/ Tx");

r xTxBut t on- >Enabl eW ndow(t rue);

r xTXxRunni ng=f al se;

voi d CConmsTabl: : OnOK()

/1 TODO Add your specialized code here and/or call the base
cl ass

122

i f (rxTxRunning)

{
CString disp;
di sp. Format (" Cannot cl ose panel while channels are
active !11");
Af xMessageBox(di sp, MB_ K 0);
}
el se
{
CPr opert yPage: : OnOK() ;
}

LRESULT CCommsTabl:: OnThr eadsFi ni shed(WPARAM wpar am LPARAM [par an)
{

OnBnd i ckedRxt xenabl ebut t on() ;

return O;

COMMSTAB2.H

#pragma once
#i ncl ude "Resource. h"

/1 CConmmsTab2 di al og

cl ass CComsTab2 : public CPropertyPage

{
DECLARE_DYNAM C(CConms Tab2)

CEdi t* rxFrequency] 8];
CComboBox* rxModul ation [8];
CEdi t* rxSynbol Rat e[8] ;
CEdit* rxFile[8];

CButton* findRxFile[8];

voi d Set RxChannel Fi | eName(short rxChanNunj;
voi d Get Control Pointers();

void InitializeControls();

voi d Enabl eControl s();

public:
CComsTab2() ;
virtual ~CCommsTab2();

/1 Dialog Data
enum{ 1 DD = | DD_COMVSTAB2 };

prot ect ed:
virtual void DobDat aExchange(CDat aExchange* pDX); /1 DDX/ DDV
support

DECLARE_NESSAGE_NMAP()
publ i c:

123

virtual BOOL OnlnitDial og();

virtual BOOL OnSet Active();

af x_nmsg void OnBnd i ckedFi ndfil el();
af x_nmsg void OnBnd i ckedFi ndfil e2();
af x_msg void OnBnd i ckedFi ndfil e3();
af x_nsg void OnBnd i ckedFi ndfil e4d();
af x_nsg void OnBnd i ckedFi ndfil e5();
af x_nmsg void OnBnd i ckedFi ndfil e6();
af x_nmsg void OnBnd i ckedFi ndfil e7();
af x_msg void OnBnd i ckedFi ndfil e8();
virtual BOOL OnKill Active();

COMMSTAB2.CPP

/1 ComsTab2.cpp : inplenmentation file
/1

#i ncl ude "stdaf x. h"
#i ncl ude " CommsTab2. h"

/1 CCommsTab2 dial og

| MPLEMENT _DYNAM C(CCommsTab2, CPropertyPage)
CCommsTab2: : CConmsTab2()

CPr opert yPage(CConmsTab2: : | DD)
{

}

CComsTab2: : ~CComsTab2()

{
}

voi d CConmmsTab2: : DoDat aExchange(CDat aExchange* pDX)
{

}

CPr opert yPage: : DoDat aExchange(pDX) ;

BEG N_MESSAGE_MAP(CCommsTab?2, CPropertyPage)
ON_BN_CLI CKED(| DC_FI NDFI LE1, OnBnCl i ckedFi ndfil el)
ON_BN_CLI CKED(| DC_FI NDFI LE2, OnBnd i ckedFi ndfi | e2)

ON_BN_CLI CKED(| DC_FI NDFI LE3, OnBndl i ckedFi ndfi | e3)

ON_BN_CLI CKED(| DC_FI NDFI LE4, OnBndl i ckedFi ndfi | e4)

ON_BN_CLI CKED(| DC_FI NDFI LE5, OnBndl i ckedFi ndfi | e5)

ON_BN_CLI CKED(| DC_FI NDFI LE6, OnBndl i ckedFi ndfi | e6)

ON_BN_CLI CKED(| DC_FI NDFI LE7, OnBndl i ckedFi ndfi | e7)

ON_BN_CLI CKED(| DC_FI NDFI LES, OnBndl i ckedFi ndfi | e8)
END_MESSAGE_MAP()

/1 CCommsTab2 message handl ers

BOOL CCommsTab2:: OnlnitDial og()
124

}

CPropertyPage: : Onlnit D al og() ;

/1 TODO Add extra initialization here
Get Cont rol Poi nters();
InitializeControls();
Enabl eControl s();
return TRUE, //
control
/1 EXCEPTI ON: OCX Property Pages should return FALSE

return TRUE unl ess you set the focus to a

BOOL CComrsTab2:: OnSet Acti ve()

cl ass

/1 TODO Add your specialized code here and/or call the base

Enabl eControl s();

return CPropertyPage:: OnSet Active();

voi d CConmsTab2: : Get Cont r ol Poi nters()

{

r xFrequency] 0]
r xFrequency| 1]
r xFrequency] 2]
r xFrequency] 3]
r xFrequency| 4]
r xFrequency| 5]
r xFr equency| 6]
r xFrequency] 7]

r xModul at i on[0]
r xModul ati on[1]
r xModul ati on[2]
r xModul at i on[3]
r xModul at i on[4]
r xModul at i on[5]
r xModul at i on[6]
r xModul ati on[7]

r xSymbol Rat e[0]
r xSynmbol Rat e[1]
r xSynmbol Rat e[2]
r xSynmbol Rat e[3]
r xSymbol Rat e[4]
r xSynmbol Rat e[5]
r xSymbol Rat e[6]
r xSymbol Rat e[7]

(CEdit*) Ge
(CEdit*) Ge
(CEdit*) Ge
(CEdit*) Ge
(CEdit*) Ge
(CEdit*) Ge
(CEdit*) Ge
(CEdit*) Ge

(CConboBox
(CCommboBox
(CComboBox
(CCommboBox
(CComboBox
(CConboBox
(CCommboBox
(CComboBox

tD gltenm(| DC_FREQEDI T1);
tD glten(| DC_FREQEDI T2);
tD glten(| DC_FREQEDI T3);
tD glten(| DC_FREQEDI T4);
t Dl gl tem(| DC_FREQEDI T5) ;
tDl gltem | DC_FREQEDI T6) ;
tD gltem(| DC_FREQEDI T7);
tD glten(| DC_FREQEDI T8);

*) Get Dl glten(| DC_MODULATI ONL);
*) Get Dl glt en(| DC_MODULATI ON2) ;
*) Get Dl glt en(| DC_MODULATI ONB) ;
*) Get Dl glt en(| DC_MODULATI ON4) ;
*) Get Dl gl t en{ | DC_MODULATI ON5) ;
*) Get Dl glten(| DC_MODULATI ON6) ;
*) Get Dl glt en{ | DC_MODULATI ON7) ;
) Get Dl glten(l DC_MODULATI ON8):

*

(CEdit*) GetDl glten(l DC_SYMBOLRATEL):
(CEdit*) GetD glten(l DC_SYMBOLRATE2):
(CEdit*) GetD glten(l DC_SYMBOLRATE3):
(CEdit*) GetD glten({l DC_SYMBOLRATE4)
(CEdit*) GetD glten(l DC_SYMBOLRATES):
(CEdit*) GetD glten({lDC_SYMBOLRATES):
(CEdit*) GetD glten(l DC_SYMBOLRATE?):
*)

(CEdi t

rxFile[0] = (CEdit*) GetDigl
rxFile[1l] = (CEdit*) GetD gl
rxFile[2] = (CEdit*) GetD gl
rxFile[3] = (CEdit*) GetD gl
rxFile[4] = (CEdit*) GetDigl

CGet Dl gl t en{ | DC_SYMBOLRATES) ;

t em(| DC_DESTFI LE1) ;
t en(| DC_DESTFI LE2) ;
t en(| DC_DESTFI LE3) ;
t en(| DC_DESTFI LE4) ;
t en(| DC_DESTFI LE5) ;

125

rxFile[5] = (CEdit*) GetD gltenm(| DC_DESTFI LE6) ;

rxFile[6] = (CEdit*) GetD glten(|DC_DESTFILE7);

rxFile[7] = (CEdit*) GetD glten(|DC _DESTFILES);

findRxFile[0] = (CButton*) GetD glten(| DC_FI NDFI LE1);
findRxFile[1l] = (CButton*) GetD glten(|DC_FI NDFI LE2);
findRxFile[2] = (CButton*) GetD gltenm(|DC_FI NDFI LE3);
findRxFile[3] = (CButton*) GetD glten(|DC_FI NDFI LE4);
findRxFile[4] = (CButton*) GetD glten(| DC_FI NDFI LE5);
findRxFile[5] = (CButton*) GetDl glten(| DC_FI NDFI LE6) ;
findRxFile[6] = (CButton*) GetD glten(|DC_FI NDFI LE7);
findRxFile[7] = (CButton*) GetD glten(|DC_FI NDFI LES);

voi d CCommsTab2::InitializeControls()

{

voi d CConmsTab2: : Enabl eControl s()

{

voi d CComsTab2: : Set RxChannel Fi | eNane(short

{

CString fil eNane;

for

{

for

{

for (int

(int

fil eNane. Format (" D: \\ WaveRadi o\ \ RxChannel

i =0;i<8;i ++)

rxFile[i]->Set WndowText (fil eNane);

r xFrequency[i]->Set W ndowText ("23500000") ;
rxModul ation[i]->AddString("Test Tone");
rxModul ation[i]->AddString(" QSK");

rxModul ation[i]->AddString("8-PSK");
rxModul ation[i]->AddString("16-PSK");
rxModul ation[i]->Set CurSel (1);

rxSymbol Rat e[i | - >Set W ndowText ("4");

(int i=0;

i <wr - >r xChannel sCount ;

i ++)

r xFrequency[i]->Enabl eW ndow(true);
rxModul ati on[i]->Enabl eW ndow(true);
rxSymbol Rat e[i | - >Enabl eW ndow(true);
rxFile[i]->Enabl eW ndow(true);
findRxFil e[i]->Enabl eW ndow(true);

i =wr - >r xChannel sCount ;

i <8; i ++)

r xFrequency|[i] - >Enabl eW ndow f al se);
r xModul ati on[i]->Enabl eW ndow(f al se);
rxSymbol Rat e[i] - >Enabl eW ndow(f al se) ;
rxFile[i]->Enabl eW ndow fal se);
findRxFil e[i]->Enabl eW ndow(fal se);

r xChanNum

126

#9%du. wdf ", i +1);

LPCSTR filefilter="WaveRunner Data files\0 *.WbC\0 Al files\0

*. ¥\ 0",

voi d

voi d

'CFiIeDialog filefind(false);
filefind.mofn.IpstrTitle="File to save the received data";
filefind. mofn.| pstrDef Ext="WDC";
filefind. mofn.lpstrFilter=filefilter;
if (filefind. DoModal ()==I DOK)

r xFi | e[rxChanNunj - >Set W ndowText (fil efi nd. Get Pat hNare()) ;
el se

rxFi | e[r xChanNuni - >Set W ndowText ("");

CCommsTab2: : OnBnd i ckedFi ndfil el()
/1 TODO Add your control notification handler code here
Set RxChannel Fi | eName(0) ;

CCommsTab2: : OnBnd i ckedFi ndfi | e2()
/1 TODO Add your control notification handler code here
Set RxChannel Fi | eName(1) ;

CComrsTab2: : OnBnCl i ckedFi ndfi | e3()
/1 TODO Add your control notification handler code here
Set RxChannel Fi | eName(2) ;

CComsTab2: : OnBnd i ckedFi ndfi | e4()
/1 TODQO Add your control notification handler code here
Set RxChannel Fi | eName(3) ;

CComsTab2: : OnBnd i ckedFi ndfi | e5()
/1 TODQO Add your control notification handler code here
Set RxChannel Fi | eNanme(4) ;

CCommsTab2: : OnBnd i ckedFi ndfi | e6()
/1 TODO Add your control notification handler code here
Set RxChannel Fi | eName(5) ;

CComrsTab2: : OnBnCl i ckedFi ndfil e7()

/1 TODO Add your control notification handler code here
Set RxChannel Fi | eName(6) ;

127

}
voi d CConmsTab2: : OnBnd i ckedFi ndfil e8()

/1 TODO Add your control notification handler code here
Set RxChannel Fi | eName(7) ;

}
BOOL CCommrsTab2:: OnKill Acti ve()

/1 TODO Add your specialized code here and/or call the base

cl ass
for (int rxCh=0; rxCh<w ->rxChannel sCount; rxCh++)

{
LPTSTR buf f er =new char [80] ;
r xFrequency[r xCh] - >Get W ndowText (buffer, 9);
rxChannel | nfo[rxCh] . frequency=at ol (buffer);
r xChannel | nf o[r xCh] . k=r xModul at i on[r xCh] - >Get Cur Sel () +1;
r xSymbol Rat e[r xCh] - >Get W ndowText (buffer, 9);
rxChannel | nf o[rxCh] . dat ar at e=at ol (buffer);
rxFil e[rxCh] - >Get W ndowText (buf f er, 80);
rxChannel I nfo[rxCh] . fil eNane=buffer
i f (wr->rxChannel sConfi gur ed<w - >r xChannel sCount)
{
wr - >r xChannel sConf i gur ed=wr - >r xChannel sCount ;
}

}

return CPropertyPage: : OnKill Active();

COMMSTAB3.H

#pragma once
#i ncl ude "Resource. h"

/1 CConmmsTab3 di al og

cl ass CComsTab3 : public CPropertyPage

{
DECLARE_DYNAM C(CConms Tab3)

CEdi t* txFrequency] 8];
CComboBox* txModul ati on[8];
CEdi t* txSynbol Rat e[8] ;
CEdit* txFile[8];

CButton* findTxFile[8];
CConmboBox* attenuation[8];

voi d Set TxChannel Fi | eNane(short txChanNunj;
voi d Get Control Pointers();

void InitializeControls();

voi d Enabl eControl s();

public:
CComsTab3();

128

virtual ~CCommsTab3();

/1 Dialog Data
enum { 1 DD = | DD_COWSTABS };

pr ot ect ed:
virtual void DobDat aExchange(CDat aExchange* pDX); /1 DDX/ DDV
support

DECLARE_MESSAGE_MAP()

public:
virtual BOOL OnlnitDi al og();
virtual BOOL OnSet Active();
af x_nmsg void OnBnd i ckedFil efi nd1();
af x_msg void OnBnd i ckedFi | efi nd2();
af x_nsg void OnBnd i ckedFil efind3();
af x_nsg void OnBnd i ckedFi |l efind4();
af x_nmsg void OnBnd i ckedFi |l efi nd5();
af x_nmsg void OnBnd i ckedFil efi nd6();
af x_msg void OnBnd i ckedFil efind7();
af x_nsg void OnBnd i ckedFi |l efi nd8();
virtual BOOL OnKill Active();

COMMSTAB3.CPP

/1 CommsTab3.cpp : inplenmentation file
/1

#i ncl ude "stdaf x. h"
#i ncl ude " CommsTab3. h"
#i ncl ude "mat h. h"

/1 CConmsTab3 di al og

| MPLEMENT_DYNAM C(CConms Tab3, CPropert yPage)
CComsTab3: : CConmsTab3()

CPr opert yPage(CCommsTab3: : | DD)
{

}

CComsTab3: : ~CComsTab3()

{
}

voi d CConmsTab3: : DoDat aExchange(CDat aExchange* pDX)
{

}

CPr opert yPage: : DoDat aExchange(pDX) ;

BEG N_MESSAGE _MAP(CComrsTab3, CPropertyPage)
ON_BN_CLI CKED(| DC_FI LEFI ND1, OnBnC i ckedFi | efi ndl)
ON_BN_CLI CKED(| DC_FI LEFI ND2, OnBnCl i ckedFi | ef i nd2)

129

ON_BN_CLI CKED(| DC_FI LEFI ND3, OnBnCl i ckedFi | ef i nd3)
ON_BN_CLI CKED(| DC_FI LEFI ND4, OnBnC i ckedFi | ef i nd4)
ON_BN_CLI CKED(| DC_FI LEFI ND5, OnBnd i ckedFi | ef i nd5)
ON_BN_CLI CKED(| DC_FI LEFI ND6, OnBndl i ckedFi | ef i nd6)
ON_BN_CLI CKED(| DC_FI LEFI ND7, OnBnCl i ckedFi | ef i nd7)
ON_BN_CLI CKED(| DC_FI LEFI ND8, OnBnCl i ckedFi | ef i nd8)

voi d CConmsTab3: : Get Cont r ol Poi nters()

{

t xFr equency|[0]
t xFrequency|[1]
t xFrequency|[2]
t xFrequency| 3]
t XFrequency| 4]
t xFr equency| 5]
t xFr equency| 6]
t xFrequency|[7]

(CEdi t *)
(CEdi t *)
(CEdi t *)
(CEdi t *)
(CEdi t *)
(CEdi t *)
(CEdi t *)
(CEdi t *)

Get DI gl t en(| DC_TXFREQUENCY1) ;
Get DI gl t en(| DC_TXFREQUENCY2) ;
Get DI gl t en(| DC_TXFREQUENCY3) ;
Get DI gl t en(| DC_TXFREQUENCY4) ;
Get DI gl t en(| DC_TXFREQUENCY5) ;
Get DI gl t en(| DC_TXFREQUENCY®) ;
Get DI gl t en(| DC_TXFREQUENCY7) ;
Get DI gl t en(| DC_TXFREQUENCYS) ;

t xModul ati on[0] = (CConboBox*) GCetDl glten{| DC_TXMODULATI ON1) ;
t xModul ation[1] = (CConboBox*) GetD glten(| DC_TXMODULATI ON2) ;
t xModul ation[2] = (CConboBox*) GetDl glten(| DC_TXMODULATI ON3) ;
t xModul ation[3] = (CConboBox*) GetDl glten(| DC_TXMODULATI O\4) ;
t xModul ation[4] = (CConboBox*) GetDl glten{| DC_TXMODULATI ON5S) ;
t xModul ati on[5] = (CConboBox*) GetDl glten{| DC_TXMODULATI ON6) ;
t xModul ati on[6] = (CConboBox*) Get Dl glten{| DC_TXMODULATI ON7) ;
t xModul ation[7] = (CConboBox*) GetDl glten(| DC_TXMODULATI ON8) ;
t xSynbol Rat e[0] (CEdit*) GetD gltenm(| DC_TXDATARATEL);

t xSynbol Rate[1] = (CEdit*) GetD glten(| DC_TXDATARATE2) ;
t xSynbol Rate[2] = (CEdit*) CetD glten{(| DC_TXDATARATE3);
t xSynbol Rate[3] = (CEdit*) GCetD glten{| DC_TXDATARATE4);
t xSynbol Rate[4] = (CEdit*) GCetD glten{| DC_TXDATARATES) ;
t xSynbol Rate[5] = (CEdit*) GetD glten(l DC_TXDATARATES) ;
t xSynbol Rate[6] = (CEdit*) GetD gltenm(| DC_TXDATARATE?) ;
t xSynbol Rate[7] = (CEdit*) CetD glten{(| DC_TXDATARATES);
txFile[0] = (CEdit*) GetD glten(|DC_TXFILE1);

txFile[l] = (CEdit*) GetD glten{|DC_TXFILE2);

txFile[2] = (CEdit*) GetDi glten(|DC TXFILE3);

txFile[3] = (CEdit*) GetD glten(|DC_TXFI LE4);

txFile[4] = (CEdit*) GetD glten(|DC_TXFILES5);

txFile[5] = (CEdit*) GetD glten(|DC_TXFILES6);

txFile[6] = (CEdit*) GetD glten(|DC_TXFILE7);

txFile[7] = (CEdit*) GetDi glten(|DC TXFILES);
findTxFile[0] = (CButton*) GetD glten{|DC_FILEFIND1);
findTxFile[l] = (CButton*) GetD glten(| DC_FILEFI ND2);
findTxFile[2] = (CButton*) GetD glten(| DC_FI LEFI ND3);
findTxFile[3] = (CButton*) GetD glten(|DC _FI LEFI ND4);
findTxFile[4] = (CButton*) CetD glten{| DC_FILEFI ND5);
findTxFile[5] = (CButton*) GetD glten{| DC_FILEFI ND6);
findTxFile[6] = (CButton*) GetD glten(| DC_FI LEFI ND7);
findTxFile[7] = (CButton*) GetD glten(| DC_FI LEFI ND8);

attenuati on[0]

= (CComboBox*) GetD gltem(| DC_ATTN1);
130

attenuation[1]
attenuation[2]
attenuati on[3]

(CComboBox*) GetD gltem(| DC_ATTN2) ;
(CConmboBox*) GetDi gltem(| DC_ATTN3);
(CConboBox*) GetDi gltem(| DC_ATTN4) ;

attenuati on[4] (CComboBox*) GetD gltem(| DC_ATTNS) ;
attenuati on[5] (CComboBox*) GetD gltem(| DC_ATTNG) ;
attenuati on[6] (CComboBox*) GetD gltem(| DC_ATTN?) ;
attenuati on[7] (CComboBox*) GetDl gltem(| DC_ATTNS);
}
voi d CComsTab3::IlnitializeControls()
{
CString fil eNane;
for (int i=0;i<8;i++)
{
fil eNane. Format (" TxChannel #%.i.wdf",i +1);
txFile[i]->Set WndowText (fil eNane);
t xFrequency[i] ->Set W ndowText (" 23500000") ;
t xModul ation[i]->AddString("Test Tone");
t xModul ation[i]->AddString(" QPSK");
t xModul ation[i]->AddString("8-PSK");
t xModul ation[i]->AddString("16-PSK");
t xModul ation[i]->Set CurSel (1);
t xSynbol Rat e[i] - >Set W ndowText (" 58125");
char attn[3];
for (int j=0;j<93;j= +6)
sprintf(attn,"%Ru",j);
attenuation[i]->AddString(attn);
}
attenuation[i]->Set CurSel (2);
}
}
voi d CComsTab3: : Enabl eControl s()
{
for (int i=0; i<w->txChannel sCount; i++)
{
t xFrequency[i] - >Enabl eW ndow(true);
t xModul ati on[i]->Enabl eW ndow(true);
t xSynbol Rat e[i] - >Enabl eW ndow(t rue);
txFil e[i]->Enabl eWndow(true);
findTxFile[i]->Enabl eWndow(true);
attenuation[i]->Enabl eW ndow(true);
}
for (int i=w->txChannel sCount; i<8; i++)
{
t xFrequency[i] - >Enabl eW ndow(f al se) ;
t xModul ati on[i]->Enabl eW ndow f al se);
t xSynbol Rat e[i] - >Enabl eW ndow(f al se);
txFil e[i]->Enabl eWndow(fal se);
findTxFile[i]->Enabl eW ndow(fal se);
attenuation[i]->Enabl eW ndow(fal se);
}
}

131

voi d CComsTab3: : Set TxChannel Fi | eNane(short txChanNum

LPCSTR filefilter="WaveRunner Data files\0 *. WDF\ 0";
CFrileDialog filefind(true);
filefind. mofn.IpstrTitle="File to retrieve the transm ssion

dat a";
filefind. mofn.| pstrDef Ext="WDF";
filefind.mofn.IpstrFilter=filefilter;
if (filefind. DoMbdal () ==I DCOK)
{
t xFi | e[t xChanNumn - >Set W ndowText (fi | ef i nd. Get Pat hName()) ;
}
el se
{
t xFi | e[t xChanNum - >Set W ndowText ("");
}
}

/1 CCommsTab3 nessage handl ers

BOOL CComrsTab3:: Onl nitDial og()

{
CPropertyPage: : Onl ni t Di al og();

/1 TODO Add extra initialization here
Get Cont rol Poi nters();
InitializeControls();

Enabl eControl s();

return TRUE; // return TRUE unless you set the focus to a
control

/1 EXCEPTI ON. OCX Property Pages should return FALSE
}
BOOL CCommsTab3:: OnSet Acti ve()

/1 TODO Add your specialized code here and/or call the base
cl ass

Enabl eControl s();

return CPropertyPage:: OnSet Active();

}

voi d CCommsTab3:: OnBnCl i ckedFi | ef i nd1()

{
/1 TODO Add your control notification handler code here
Set TxChannel Fi | eNanme(0) ;

}

voi d CComsTab3:: OnBnd i ckedFi | ef i nd2()

/1 TODQO Add your control notification handler code here
Set TxChannel Fi | eNanme(1);

}

voi d CCommsTab3: : OnBnd i ckedFi | ef i nd3()
132

voi d

voi d

voi d

voi d

BOOL
{

cl ass

/1 TODO Add your control notification handler code here
Set TxChannel Fi | eName(2) ;

CComsTab3:: OnBnd i ckedFi | ef i nd4()

/1 TODQO Add your control notification handler code here
Set TxChannel Fi | eName(3) ;

CCommsTab3: : OnBnd i ckedFi | ef i nd5()

/1 TODO Add your control notification handler code here
Set TxChannel Fi | eNanme(4) ;

CComsTab3: : OnBnd i ckedFi | ef i nd6()

/1 TODO Add your control notification handler code here
Set TxChannel Fi | eName(5) ;

CComsTab3:: OnBnd i ckedFi | ef i nd7()

/1 TODQO Add your control notification handler code here
Set TxChannel Fi | eNane(6) ;

CComsTab3: : OnBnd i ckedFi | ef i nd8()

/1 TODO Add your control notification handler code here
Set TxChannel Fi | eName(7) ;

CComsTab3:: OnKi | | Active()

/1 TODO Add your specialized code here and/or call the base

for (int txCh=0; txCh<wr->txChannel sCount; txCh++)
{
char* buffer=new char[80];
t xFrequency[t xCh] - >Get W ndowText (buffer, 9);
t xChannel I nf o[t xCh] . frequency=at ol (buffer);

t xChannel | nf o[t xCh] . k=t xModul ati on[t xCh] - >Get Cur Sel () +1;

t xSynbol Rat e[t xCh] - >Get W ndowText (buffer, 9);
t xChannel | nf o[t xCh] . dat ar at e=at ol (buffer);

t xFi | e[t xCh] - >Get W ndowText (buf f er, 80);

t xChannel I nf o[t xCh] . fi | eName=buf f er;
attenuati on[t xCh] - >Get W ndowText (buf fer, 9);

t xChannel I nf o[t xCh] . att enuat i on=pow(2, atol (buffer)/6);

i f (w->txChannel sConfi gur ed<wr - >t xChannel sCount)

133

{

wr - >t xChannel sConfi gur ed=wr - >t xChannel sCount ;
}

} . .

return CPropertyPage:: OnKill Active();

GLOBALVARS.H

#i ncl ude "afxnt.h"
#i ncl ude "WaveRunner. h"
#def i ne USERI SRO
/ | #define DEVI CE_NUM 0

#i ncl ude "pntradioi.h"
/I #i ncl ude "pntradi o_nemap. h"

#i f ndef TYPES_DEFI NED
#def i ne TYPES_DEFI NED

#def i ne WM PROCESSES FI Nl SHED WM USER + 1
const float pi=3.1415926535;

struct Channel St at us

{
CEdit* status;
CProgressCrl™* progress;

}s

struct Channel | nf o
unsi gned | ong frequency;
unsi gned short Kk;
unsi gned int datarate;
CString fil eNaneg;
unsi gned short attenuation;
bool FI FA nt errupt Mask;
unsi gned short FI FO nterrupt St at us;

#endi f

/1 The one and only object of the WaveRunner card
extern WaveRunner* wr;

/1 dobal Arrays storing the channel data and status
ext ern Channel St at us txChannel St at us[8] ;

ext ern Channel St at us rxChannel St at us[8] ;

extern Channel I nfo txChannel | nfo[8];

ext ern Channel I nfo rxChannel | nfo[8];

/1 The main and the Rx/Tx threads

extern U NT mai nRxTxThr ead(LPVO D pParam ;
extern U NT rxThread(LPVO D pParam ;

extern U NT txThread(LPVO D pParanj;

extern CString Mdul ate(int txChannel Nunber);

134

extern voi d Denodul at e(i nt rxChannel Nunber, bool createlog);

extern CEvent txBufferEnpty[WaveRunner:: maxChannel s];
extern CEvent rxBufferFull[WaveRunner: : maxChannel s];

WAVERUNNER.H

#pragma once
#i ncl ude " RxChannel . h"
#i ncl ude " TxChannel . h"

//Static variable defining if the WaveRunner
/1 Singleton class has been initiated

cl ass WaveRunner

L
private:

WaveRunner (voi d) ;

void InitVariabl es(void);
publi c:

/1 The maxi mum nunber of channel s

const static unsigned short nmaxChannel s=8;

/1 The nunber of 32 bit sanples per bl ock

const static unsigned short bl ockSi ze=1024;

const static unsigned |ong rxCd ockFrequency=93000000;
const static unsigned |ong txCO ockFrequency=93000000;

unsi gned | ong* firnmnareRevi si onDat €;
char confi gPat h[80] ;

char configFil e[80];

i nt cardStat us;

bool configured;

/1 DMA addresses

unsi gned | ong | DMAvAddr ess;

unsi gned | ong* DMA virtual _Address;
unsi gned | ong | DMApAddr ess;

unsi gned | ong* DMA physi cal _Address;
unsi gned | ong txControl

unsi gned | ong rxControl

unsi gned | ong i nterrupt Mask;

unsi gned | ong aut oDMACtr I ;

unsi gned | ong txFI FOmask;

unsi gned | ong rxFl FOrask

/] Threads st atus

unsi gned int threadsReady;

unsi gned short rxThreadsRunni ng;
unsi gned short txThreadsRunni ng;

/] Status vari abl es
bool rxTxEnabl e;

/| Channel Pointers

135

RxChannel * rxChannel [8] ;
TxChannel * t xChannel [8] ;

[/ Channel Paraneters

unsi gned | ong rxBl ocksPer G oup
unsi gned | ong rxG oupsPer Channel
unsi gned | ong rxThreshol dG oups;
unsi gned | ong rxChannel Si ze;
unsi gned | ong t xBl ocksPer G oup;
unsi gned | ong txG oupsPer Channel
unsi gned | ong txThreshol dG oups;
unsi gned | ong txChannel Si ze;
unsi gned | ong nmenorySi ze;

unsi gned | ong maxAnpli tude;

[/ Channel s st at us

unsi gned short txChannel sCount;

unsi gned short rxChannel sCount;

unsi gned short rxChannel sConfi gur ed;
unsi gned short txChannel sConfi gur ed;

static WaveRunner* get NewaveRunner () ;
int Open();

int Cdose();

int Configure();

i nt enabl eTx(void);

i nt disableTx(void);

i nt enabl eRx(void);

i nt disabl eRx(void);

i nt enabl eRxTx();

i nt disabl eRxTx();

int enablelnterrupts();
int disablelnterrupts();
~WaveRunner (voi d) ;

}s

WAVERUNNER.CPP

#i ncl ude " St dAf x. h"

#i ncl ude "direct.h"

#i ncl ude "mat h. h"

#i ncl ude "WaveRunner. h"
#i ncl ude " RxChannel . h"

#i
#i

ncl ude "TxChannel . h"
ncl ude "menory_nap. h"

/IVariable declaring if a WaveRunner obj ect
/' has al ready been created
bool bWaveRunner Al r eadyCr eat ed=f al se;

/1 Cl ass constructor

136

WaveRunner : : WaveRunner (voi d)
{
confi gFi | e[0] =0;
confi gPat h[0] =0;
cardSt at us=-1;
confi gur ed=f al se;

r xTxEnabl e=f al se;

t xChannel sCount =0;

r xChannel sCount =0;

t xChannel sConfi gur ed=0;

r xChannel sConfi gur ed=0;

DVA vi rtual _Addr ess=& DMAvAddr ess;
DVA physi cal _Addr ess=& DMApAddr ess;

maxAnpl i t ude=0x7FFF;
I nitVariables();

/1 Cl ass destructor
WaveRunner : : ~\WveRunner (voi d)

{
}
voi d WaveRunner: : I nitVariabl es()
{
t hr eadsReady=0;
r xThr eadsRunni ng=0;
t XThr eadsRunni ng=0;
}

/1Singleton Cass Instantiation
WaveRunner* \WaveRunner: : get NewaveRunner ()

{ i f (!bWaveRunner Al r eadyCr eat ed)
bWwaveRunner Al r eadyCr eat ed=t r ue;
return new WaveRunner () ;

}
el se
{
return NULL;
}
}

i nt WaveRunner: : Open()
{
InitVariables();
r xBl ocksPer Gr oup=4;
r xGr oupsPer Channel =2;
r xThr eshol dGr oups=1;
r xChannel Si ze=bl ockSi ze*r xBl ocksPer G oup*r xG oupsPer Channel ;
t xBl ocksPer G oup=4;
t XGr oupsPer Channel =2;

137

t XThr eshol dG oups=1;
t xChannel Si ze=bl ockSi ze*t xBl ocksPer G oup*t xGr oupsPer Channel

// Reset the DUC
Wit eWaveRunner (0x101FC, 0x2);
Wit eWaveRunner (0x103FC, 0x2);

Set DMABuUf f er Si ze(512) ;
car dSt at us=OpenMul ti WVaveRunner (0) ;
if (!cardStatus)
{
/1 Di sabl e Discrete output
Wit eWaveRunner (_DlI SCRETE_OUTPUT_CONTROL, 0xO0);
//Wite O to DVA control register to nake sure it's off
Wit eWaveRunner (_AUTO DVA CONTROL, 0xO0);
/1 Make sure all interrupts are disabled
W iteWaveRunner (_GLOBAL_I| NTERRUPT_MASK,
DI SABLE| NTERRUPTYS)
Wit eWaveRunner (_|I NTERRUPT_MASK, 0x0);
/1 Get nmenory map pointers and set channels nmenory pointers
CGet DVAPA(& DVApAddr ess, & DVAvAddr ess) ;
unsi gned | ong total Menor y=Get MaxDMABUT f er Si ze() ;
for (int channel =0; channel <maxChannel s; channel ++)
{
r xChannel [channel] =new RxChannel (channel);
rxBuf f er Ful | [channel]. Reset Event () ;
r xChannel [channel] - >dat aBuf f er =
(unsi gned
[ong*) (| DVAVAddr ess+4*r xChannel Si ze*channel) ;
for (int synbol =0; synbol <rxChannel Si ze; synbol ++)
*(rxChannel [channel] - >dat aBuf f er +synbol) =0;

}

for (int channel =0; channel <maxChannel s; channel ++)

t xChannel [channel] =new TxChannel (channel);
t xBuf f er Enpt y[channel] . Reset Event () ;
t xChannel [channel] - >dat aBuf f er =
(unsi gned
| ong*) (| DVAVAddr ess+4*r xChannel Si ze* naxChannel s+

4*t xChannel Si ze*channel) ;
for (int synbol =0; synbol <rxChannel Si ze; synbol ++)
*(t xChannel [channel] - >dat aBuf f er +synbol) =0;
}

confi gur ed=f al se;

}

return cardStatus;

i nt WaveRunner: : d ose()
{
if (!cardStatus)
{
/1 Make sure all interrupts are disabled
W iteWaveRunner (_GLOBAL_I| NTERRUPT_MASK,
DI SABLE| NTERRUPTS)

138

/1 Make sure that Tx and Rx are di sabl ed

di sabl eRxTx() ;

// Reset the DUC

Wit eWaveRunner (0x101FC, 0x1);

for (int channel =0; channel <maxChannel s; channel ++)

{
del et e t xChannel [channel |;
}
for (int channel =0; channel <maxChannel s; channel ++)
{
del et e rxChannel [channel];
}

/1 Close card

confi gur ed=f al se;

car dSt at us=-1;

return C oseMil ti WaveRunner (0);

return -2;

/1 Configuration subroutine
i nt WaveRunner : : Confi gure()
{
unsi gned | ong witeDat a=0x0;
i f ((rxChannel sCount==0) & (txChannel sCount ==0))

Af xMessageBox("No Tx/ Rx channel s specified", MB K 0);
return -4;

}
if (configFile==NULL)

Af xMessageBox("No configuration file specified', MB OK 0);
return -5;

}

/1 Configure the Up and Downconverters, using the files produced

[/by the Configuration Tool

chdir (confi gPat h);
i nt ioError=ConfigWaveRunner (configFile);
if (ioError)

—_~——

Af xMessageBox("Unabl e to configure WaveRunner", MB (K 0);
return i oError;

}

/1 Read Tx and Rx status

ReadWaveRunner (_TRANSM T_CONTRCL, &t xControl);

t xControl =t xControl & OxFFFFFF8F;

ReadWaveRunner (_RECElI VE_CONTROL, &rxControl);
rxControl =rxControl & OxFFFFFF8F;

ReadWaveRunner (_I NTERRUPT_MASK, &i nt errupt Mask) ;
i nterrupt Mask=i nt errupt Mask & OxFFF0000O;
ReadWaveRunner (_AUTO DVA CONTROL, &aut oDMACtTI);
aut oDMACt r | =aut oDMACt r| & OxfffffcOf;

t xFlI FOmask=0;

139

r xFI FOrask=0;

/I Make sure that Tx and Rx are disabl ed
Wit eWaveRunner (_TRANSM T_CONTROL, 0xO0);
Wit eWaveRunner (_RECEI VE_CONTRCL, 0x0) ;
Wit eWaveRunner (_I NTERRUPT_MASK, 0x0);

//********* Recel ver Conflguratlon khkkkhkkhkkhkkhkhkkhkhk*k

/[I'Wite the Rx DVA Control Register in the PCI configuration
/ I addr ess space

char PCl Config[4];

PCl Conf i g[0] =Ox7E;

PCl Confi g[1] =char ((bl ockSi ze/ 2) & OxFF);

PCl Confi g[2] =char (((bl ockSi ze/ 2) & 0xFF00) >>8);

PCl Confi g[3] =char (((bl ockSi ze/ 2) & O0xFF0000) >>16) ;

Wit eWRConfi gSpace(0x4C, PCl Config, 4);

/' For every Rx channel

for (int rxCh=0; rxCh<maxChannels; rxCh++)

{
/IWite the Auto DVA Address registers
unsi gned | ong rxAddr ess=| DMApAddr ess+4*r xChannel Si ze*r xCh;
Wit eWaveRunner (_RX_ MEMORY_AREA 0_ADDRESS+0x10*r xCh,
r xAddr ess) ;

[IWite Auto DMA bl ock count register

Wit eWaveRunner (_RX MEMORY_AREA 0 BLOCK COUNT+0x10*r xCh,
r xBl ocksPer G oup) ;

/IWite the Auto DVA G oup Count Registers

Wit eWaveRunner (_RX_MEMORY_AREA 0_GROUP_COUNT+0x10*r xCh,
r xGr oupsPer Channel) ;

/IWite the nmenory area sizes

wri t eDat a=(rxChannel Si ze*r xThr eshol dG oups/ (2*r xG oupsPer Channel)

((rxChannel Si ze/ 2) <<16) ;

Wit eWaveRunner (_RX MEMORY_AREA O LI M TS+0x10*r xCh,
writeData);

/[/Wite the menory area limts

unsi gned | ong start O fset=rxCh*rxChannel Si ze/ 2;

unsi gned | ong endOf f set =(rxCh+1) *r xChannel Si ze/ 2- 1;

witeData=start O fset| (endO fset <<16);

Wit eWaveRunner (_RX_MEMORY_AREA 0_PO NTER+0x10*r xCh,
writeData);

//Wite the menory organization control register

unsi gned short channel Mask=(1<<rxCh);

writ eDat a=(rxCh<<12)| (rxCh<<8);

i f (rxCh<rxChannel sCount)

witeData=witeData | channel Mask;

Wit eWaveRunner (_RX MEMORY_AREA 0 ORGANI ZATI ON+0x10*r xCh,
writeData);

/I Mofdify the Interrupt Mask

i f (rxCh<rxChannel sCount)

{

i nterrupt Mask=i nterrupt Mask | (0Ox1l << (4+rxCh));
r xFI FOrask=r xFI FOrask | (0xB << (4*rxCh));

}

140

/IWite Rx FIFO Interrupt Mask

Wit eWaveRunner (_RECEI VE_FI FO_| NTERRUPT_MASK, r xFIl FOmask) ;

/1 Flush Rx FI FCs

Wit eWaveRunner (_RECEI VE_CONTROL, rxControl | _FIFO FLUSH);

Wit eWaveRunner (_RECElI VE_CONTROL, rxControl & _TX FI FO ENABLE);

/1 Configure Receiver to 8Xl channels

writeData=rxControl | _BIT_REGQ STERS_ENABLE |

_RX_MASTER ENABLE | _RX _Cl RCU TRY_ENABLE;

i f (rxChannel sCount>0) witeData=witeData | ((rxChannel sCount-
1) <<4);

Wit eWaveRunner (_RECEI VE_CONTROL, writeData);

/1 Di sable Timng Control

Wit eWaveRunner (_RECEI VE_TI M NG_CONTROL, 0x0);

/1 Set Receive cl ock frequency

/1 WiteWaveRunner (0x001128, cl ockFrequency-2);

//*************** Transmter Cbﬂflguratlor] khkhkkkhhkkkhkhkhkkkhkhxkhkhkkkxx

/IWite the Tx DVA Control Register in the PCl configuration
addr ess space

PCI Confi g[0] =Ox6E

PCI Confi g[1] =char ((bl ockSi ze/ 2) & OxFF);

PCl Confi g[2] =char (((bl ockSi ze/ 2) & OxFF00) >>8) ;

PCl Confi g[3] =char (((bl ockSi ze/ 2) & OxFF0000) >>16) ;

Wit eWRConfi gSpace(0x54, PCl Config, 4);

for (int txCh=0; txCh<naxChannels; txCh++)

{
/IWite the Auto DVA Address registers

wr i t eDat a=I DMApAddr ess+4* (r xChannel Si ze* naxChannel s+t xChannel Si ze

*t xCh) ;

WiteWaveRunner (_TX MEMORY_AREA O0_ADDRESS+0x10*t xCh,
writeData);

/IWite Auto DVMA bl ock count register

Wit eWaveRunner (_TX MEMORY_AREA 0 BLOCK COUNT+0x10*t xCh,
t xBl ocksPer Gr oup) ;

/IWite the Auto DMA Group Count Registers

Wit eWaveRunner (_TX MEMORY_AREA 0_GROUP_COUNT+0x10*t xCh,
t XG oupsPer Channel) ;

//Wite the menory area sizes

wr it eDat a=(bl ockSi ze*t xBl ocksPer G- oup*t xThr eshol dG oups/ 2)

| ((txChannel Si ze/ 2) <<16);

W iteWaveRunner (_TX MEMORY_AREA O LI M TS+0x10*t xCh,
writeData);

[IWite the nenory area linmts

unsi gned | ong start O fset =t xCh*t xChannel Si ze/ 2;

unsi gned | ong endOf f set =(t xCh+1) *t xChannel Si ze/ 2- 1;

witeData=startOffset | (endOffset<<16);

Wi teWaveRunner (_TX_ MEMORY_AREA 0_PO NTER+0x10*t xCh,
writeData);

/I Wite the menory organi zation control register
writeDat a=(txCh<<12)| (t xCh<<8);
i f (txCh<txChannel sCount)
witeData=writeData | (1<<txCh);
W iteWaveRunner (_TX_MEMORY_AREA 0_ORGANI ZATI ON+0x10*t xCh,
writeData);

141

/IWite the FIFO interrupt Mask
Wit eWaveRunner (_TRANSM T_FI FO_| NTERRUPT_MASK, 0);
/IWite the Interrupt Mask register
i f (txCh<txChannel sCount)
{
i nterrupt Mask=i nterrupt Mask | (Ox1 << (12+txCh));
t xFI FOmask=t xFI FOmask | (OxB << (4*txCh));
}
}

[IWite Tx FIFO interrupt mask

Wit eWaveRunner (_TRANSM T_FI FO | NTERRUPT _NMASK, t xFI FOrask) ;

/I Fl ush devi ce FI FGCs;

ReadWaveRunner (_TRANSM T_CONTROL, &witeDat a);

WiteWaveRunner (_TRANSM T_CONTROL, writeData | _TX FI FO FLUSH);

WiteWaveRunner (_TRANSM T_CONTROL, witeData & _TX FI FO ENABLE);

/1 Configure Transmitter to 8X1l channels

writeData=txControl | _TX BIT_REQ STERS_ENABLE |

TX MASTER ENABLE | _TX MASTER SYNC ENABLE |

_TX _Cl RCU TRY_ENABLE;

i f (txChannel sCount>0) witeData=witeData | ((txChannel sCount -
1) <<4);

WiteWaveRunner (_TRANSM T_CONTROL, writeData);

/1 Di sabl e Timng Control

WiteWaveRunner (_TX_TI M NG_CONTROL, 0x0);

/1Set Transmit C ock Rate

/1 WiteWaveRunner (0x002128, cl ockFrequency-2);

/1 Di sable the PRN function

/1 WiteWaveRunner (_PRN_CONTROL, Ox1A);

/1 WiteWaveRunner (_PRN _ZERO | Q VALUE, 0x0);

/1 WiteWaveRunner (_PRN _ONE | Q VALUE, 0x0);

[I'Wite interrupt mask

Wit eWaveRunner (_I NTERRUPT_MASK, i nterrupt Mask) ;

/I/Wite Auto DVA control

writeDat a=((bl ockSi ze/ 2) <<16) ;

i f (txChannel sCount>0) witeData=writeData | ((txChannel sCount-
1) <<7);

i f (rxChannel sCount>0) witeData=witeData | ((rxChannel sCount-
1) <<4);

witeData=witeData | _AUTO COUNTERS RELQAD,

Wit eWaveRunner (_AUTO DVA CONTROL, writeData);

/1 Performdummy reads in order to clear status

unsi gned | ong Dummy;

ReadWaveRunner (_RECEI VE_FI FO_| NTERRUPT_STATUS, &Dunmy) ;

ReadWaveRunner (_TRANSM T_FI FO_| NTERRUPT_STATUS, &Dummy);

ReadWaveRunner (_| NTERRUPT_ _MASK, &Dumy);

confi gured=true;

return O;

i nt WaveRunner: : enabl eTx(voi d)

i f (configured)
{

unsi gned | ong readDat a;
/1 Set Auto DVA Control Register

142

ReadWaveRunner (_AUTO DVA CONTRCL, &r eadDat a) ;
W iteWaveRunner (_AUTO DMA CONTROL, readData |
_TX_AUTO DNVA ENABLE) ;
/1 Set Interrupt Mask Register
ReadWaveRunner (_| NTERRUPT_MASK, &readDat a) ;
readDat a=readData | _DMA ABORT_DETECTED ENABLE |
_TX DVA_COVPLETE_ENABLE |
_TX_FI FO_| NTERRUPT_ENABLE;
Wit eWaveRunner (_| NTERRUPT_MASK, readDat a);
/1 Enabl e Interrupts
Wit eWaveRunner (_GLOBAL_| NTERRUPT _MASK,
ENABLE| NTERRUPTS) ;
/1 Set Tx Control Register
ReadWaveRunner (_TRANSM T_CONTROL, &readDat a) ;
W iteWaveRunner (_TRANSM T_CONTRCL, readData | _TX ENABLE);
/1 Send master sync to DUC
for (int i=0; i<500; i++);
Wit eWaveRunner (0x2130, 0x1);

return O;
}
el se
{
return -4;
}
}
i nt WaveRunner: : di sabl eTx(voi d)
{

i f (configured)

/1 Disable interrupts

W iteWaveRunner (_GLOBAL_I NTERRUPT_MASK,
DI SABLE| NTERRUPTS) ;

/1 WiteWaveRunner (_TRANSM T_FI FO_| NTERRUPT_MASK,
_ DI SABLE_| NTERRUPTS) ;

unsi gned | ong readDat a;

ReadWaveRunner (_| NTERRUPT_MASK, &readDat a);

Wit eWaveRunner (_| NTERRUPT_MASK, readData &
TX | NTERRUPTS_DI SABLE) ;

/1 Di sabl e DNVA

ReadWaveRunner (_AUTO DVA CONTROL, &readData);

Wit eWaveRunner (_AUTO DVA CONTROL, readData &
_TX_AUTO_DVA DI SABLE) ;

/1 Di sabl e Receiver circuitry

ReadWaveRunner (_TRANSM T_CONTROL, &readDat a);

WiteWaveRunner (_TRANSM T_CONTROL, readData & _TX DI SABLE);

// Reset the DUC

Wit eWaveRunner (0x101FC, 0x2);

Wit eWaveRunner (0x103FC, 0x2);

return O;
}
el se
{

return -4;
}

143

i nt WaveRunner: : enabl eRx(voi d)

{
i f (configured)

unsi gned | ong readDat a;

/1 Set Auto DVA Control Register

ReadWaveRunner (_AUTO DVA CONTRCL, &r eadDat a) ;

Wit eWaveRunner (_AUTO DVA CONTROL, readData |
_RX_AUTO _DNVA _ENABLE) ;

/1Set Interrupt Mask Register

ReadWaveRunner (_| NTERRUPT_MASK, &readDat a);

Wit eWaveRunner (_| NTERRUPT_MASK, readData |
_RX_DVA COVPLETE_ENABLE) ;

/1 Enabl e Interrupts

Wit eWaveRunner (_GLOBAL_| NTERRUPT _MASK,
_ENABLE_I NTERRUPTS) ;

/1 Set Receive Control register

ReadWaveRunner (_RECEI VE_CONTROL, &readDat a);

W iteWaveRunner (_RECEI VE_CONTROL, readData | _RX_ENABLE);

return O;
}
el se
{

return -4;
}

i nt WaveRunner: : di sabl eRx(voi d)

{
i f (configured)

/1 Disable interrupts

W iteWaveRunner (_GLOBAL_I| NTERRUPT_MASK,
DI SABLE| NTERRUPTS) ;

/I WiteWaveRunner (_RECEI VE_FI FO_| NTERRUPT_ASK,
DI SABLE| NTERRUPTS) ;

unsi gned | ong readDat a;

ReadWaveRunner (_| NTERRUPT_MASK, &readDat a) ;

Wit eWaveRunner (_| NTERRUPT_MASK, readData &
_RX_I NTERRUPTS_DI SABLE) ;

/ | Di sabe DVA

ReadWaveRunner (_AUTO DVA CONTROL, &readDat a);

Wi teWaveRunner (_AUTO DMA CONTRCOL, readData &
_RX_AUTO_DNVA_DI SABLE) ;

/1 Di sabl e Receiver circuitr

ReadWaveRunner (_RECElI VE_CONTROL, &readDat a);

W iteWaveRunner (_RECEI VE_CONTROL, readData & _RX Dl SABLE);

return O;
}
el se
{

return -4;
}

144

i nt WaveRunner: : enabl eRxTx()

{
i f (configured)
i f (rxChannel sCount >0) enabl eRx();
for (int i=0; i<5000;i++);
i f (txChannel sCount >0) enabl eTx();
return O;
}
el se
{
return -4;
}
}

i nt WaveRunner: : di sabl eRxTx()

i f (configured)

{
di sabl el nterrupts();
i f (rxChannel sCount >0) di sabl eRx();
i f (txChannel sCount>0) disabl eTx();
return O;

}

el se

{
return -4;

}

i nt WaveRunner: : enabl el nterrupts()

{
i f (configured)

{
Wit eWaveRunner (_GLOBAL_| NTERRUPT MASK,
ENABLE| NTERRUPTS) ;

return O;
}
el se
{

return -4;
}

i nt WaveRunner: : di sabl el nterrupts()

{
i f (configured)

{
W iteWaveRunner (_GLOBAL_I NTERRUPT_MASK
DI SABLE| NTERRUPTS)
return O;
}

el se

145

return -4;

WAVERUNNERCHANNEL.H

#pragma once

cl ass WaveRunner Channe

{

publi c:
unsi gned short channel Nunmber
unsi gned short channel O f set;
unsi gned | ong frequency;
unsi gned short k

CString dataFil eNane;

unsi gned | ong dat aRat e;

unsi gned | ong of f set Addr ess;
unsi gned | ong* dat aBuffer

unsi gned i nt groupsTransfered,
unsi gned short groupCount;

/I bool buffer Ready;

bool term nateProcess;
bool threadRunni ng;
bool threadReady;

WaveRunner Channel () ;
~WaveRunner Channel (voi d);

WAVERUNNERCHANNEL.CPP

#i ncl ude " St dAf x. h"
#i ncl ude "waver unner channel . h"

WaveRunner Channel : : WVaveRunner Channel (){};

WaveRunner Channel : : ~\\WWaveRunner Channel (voi d)

{
}

RXCHANNEL.H

#pragnma once
#i ncl ude "waver unnerchannel . h"

cl ass RxChanne

146

publ i ¢ WaveRunner Channe

{
publi c:
unsi gned int groupsSaved;
RxChannel (unsi gned short chanNum=O,
unsi gned | ong freq=23500000,
unsi gned short k=2,
unsi gned | ong dat aRat e=50000,
CString dfile="");
~RxChannel (voi d);
i nt set Frequency(unsigned | ong frequency);
1
RXCHANNEL.CPP

#i ncl ude " St dAf x. h"

#i ncl ude "mat h. h"

#i ncl ude "rxchannel . h"
#i ncl ude "Menory_Map. h"

RxChannel : : RcChannel (unsi gned short chanNum
unsi gned | ong freq,
unsi gned short knod,
unsi gned | ong dRat e,
CString dFile)

channel Nunber =chanNum

frequency=freq;

k=knod;

dat aRat e=dRat e

dat aFi | eNane=dFi | €;

dat aBuf f er =NULL;

gr oupsTr ansf er ed=0;

t hr eadRunni ng=f al se;

t erm nat eProcess=true;

t hr eadReady=f al se

gr oupCount =0;

i f (channel Nunber <4)

{
of f set Addr ess=0x40000;
channel O f set =channel Nunber

of f set Addr ess=0x80000;
channel O f set =channel Number - 4;

}

set Frequency(freq);
gr oupsSaved=0;

RxChannel : : ~RxChannel (voi d)
147

i nt RxChannel :: set Frequency(unsi gned | ong freq)

{

frequency=freq;

nt i oError=-4;
f (wr->configured)

[
[
{
unsi gned | ong
f reqAddr ess=of f set Addr ess+4* (0x1000* channel O f set +5) ;
unsi gned | ong freqVal ue=unsi gned
[ong(freqg*pow 2, 32)/ WaveRunner: : rxC ockFrequency);
i OError=WiteWaveRunner (fregAddress, freqgVval ue);

if (lioError)
{
i oOError=WiteWaveRunner (fregAddress+4, freqValue &
0x1);
}
}
return i oError;
}

TXCHANNEL.H

#pragnma once
#i ncl ude "waver unner channel . h"

cl ass TxChannel
publ i c WaveRunner Channe
{

public:
unsi gned int groupsLoaded;
unsi gned short attenuation

~TxChannel (voi d);
TxChannel (unsi gned short chanNumeO,
unsi gned | ong freq=23500000,
unsi gned short k=2,
unsi gned | ong dat aRat e=50000,
CString dfile="");
i nt setFrequency(unsigned | ong frequency);
i nt setDataRat e(unsi gned | ong dataRate);

TXCHANNEL.CPP

#i ncl ude " St dAf x. h"

#i ncl ude "mat h. h"

#i ncl ude "d obal Vars. h"
#i ncl ude "txchannel . h"

148

/1 #i nclude "pntradioi.h"

TxChannel : : TxChannel (unsi gned short chanNum
unsi gned | ong freq,
unsi gned short knod,
unsi gned | ong dRat e,
CString dFile)

channel Nurmber =chanNum

k=knod;

dat aFi | eNanme=dFi | e;

dat aBuf f er =NULL;

gr oupsTr ansf er ed=0;

t hr eadRunni ng=f al se;

t er mi nat eProcess=true;

t hr eadReady=f al se

gr oupCount =0

attenuati on=1;

i f (channel Nunber <4)

{
of f set Addr ess=0x10000;
channel O f set =channel Nunber

el se

of f set Addr ess=0x10200;
channel O f set =channel Nunber - 4;
}
set Frequency(freq);
set Dat aRat e(dRat e) ;
gr oupsLoaded=0;

}

TxChannel : : ~TxChannel (voi d)

{
}

i nt TxChannel :: set Frequency(unsi gned | ong freq)
{

int ioError=-4;

frequency=freq;

i f (w->configured)

{

unsi gned | ong

freqAddr ess=of f set Addr ess+4* (0x20* channel O f set +0x8) ;
unsi gned | ong freqVal ue=unsi gned

[ong(freg*pow 2, 32)/ WaveRunner: :t xCl ockFr equency);
unsi gned long Ifreq, ufreaq;
ufreq=(freqVval ue & OxFFFF0000) >>16;
| freq=freqVal ue & OxFFFF;
i oOError=WiteWaveRunner (fregAddress, ufreq);
if (!ioError)

{
}

i OError=WiteWaveRunner (fregAddr ess+4,

149

[freq);

}

return i oError;

i nt TxChannel :: set Dat aRat e(unsi gned | ong dRat e)
{

dat aRat e=dRat e

int ioError=-4;

i f (w->configured)

{

unsi gned | ong

f reqAddr ess=of f set Addr ess+4* (0x20* channel O f set +0x4) ;
unsi gned _int64 synbol Rat e=unsi gned _i nt 64(dat aRate);
unsi gned _int64 mult=unsigned _int64(pow 2,48));
doubl e

di vi sor =doubl e(pow(2, 48)) *dat aRat e/ WaveRunner: : t xCl ockFr equency;
unsi gned _int 64 dataVal ue=unsi gned _i nt64(divisor);
unsigned long Ifreq, nfreq, ufreq;
| freq=dat aval ue & OxFFFF;
nfreq=(dat avVal ue & OxFFFF0000) >>16;
uf req=(dat aval ue & OxFFFF00000000) >>32;
i oOError=WiteWaveRunner (fregAddress, ufreq);

if (lioError)
{
i oOError=WiteWaveRunner (fregAddress+4, nfreq);
if (lioError)
{
i oOError=WiteWaveRunner (fregAddress+8, Ifreq);
}
}
}
return i oError;
}
WAVERUNNERISR.CPP

#i ncl ude " St dAf x. h"

#i ncl ude "afxnt.h"

#i ncl ude " WNath. h"

#i ncl ude "direct.h"

#i ncl ude " RxChannel . h"
#i ncl ude " TxChannel . h"
#i ncl ude "Menory_map. h"
#i ncl ude "resource. h"

/I Define and initialize A obal Structures and vari abl es
Channel St at us t xChannel St at us[8] ;

Channel St at us rxChannel St at us[8] ;

Channel I nf o t xChannel | nfo[8] ;

Channel I nf o rxChannel | nf o[8] ;

CCritical Section cSection
CEvent al | Channel sReady, all Channel sDone;
CEvent t xBuffer Enpt y[WaveRunner : : naxChannel s],

150

r xBuf f er Ful | [WaveRunner : : maxChannel s] ;

//***

/1 Interrupt Service Routine. The contents of the Interrupt
/1 Status Register are stored in the variable "Status". Al so,
/1l interrupts have been disabled, so we need to re-enable them

/1 before exiting the routine.
//***

voi d PMCRadi ol srO(unsi gned | ong status)

{
//Determine if interrupt is due to the card
if ((status & _GLOBAL_I| NTERRUPT) ! =0)

/1 1f interrupt is due to a Rx FIFO interrupt
if ((status & Ox1)!=0)
{
unsi gned | ong FI FOSt at us;
unsi gned short rxChFl FO
/1 Read Rx FIFO Interrupt Status
ReadWaveRunner (_RECEI VE_FI FO_| NTERRUPT_STATUS
&FI FOst at us) ;
/I For each rx channe
for (int rxCh=0; rxCh<w ->rxChannel sCount; rxCh++)

|/ Check to see if the channel has caused the
i nterrupt

rXxChFl FO=(FI FOSt at us & (OxF << (4*rxCh))) >>
(4*rxCh);

i f (rxChFl FO =0)

{

r xChannel I nf o[rxCh]. FI FO nt er r upt St at us=t r ue;

r xChannel | nf o[rxCh] . FI FO nt er r upt Mask=r xChFI FQ

}
}
}
/1 1If interrupt is due to a receive channel DVA conplete
if ((status & 0x4)!=0)
{

/I For every rxChanne
for (int rxCh=0; rxCh<w ->rxChannel sCount; rxCh++)

/11f the channel was the cause of the interrupt
if((status & (0xl1l<< (4+rxCh)))!=0)
{
//increase the channel counter of
transfered bl ocks
wr - >r xChannel [r xCh] - >gr oupsTr ansf er ed++;
unsi gned | ong buffer;
i f (rxCh<4)

ReadWaveRunner (0x10, &buffer);
}

el se

151

{
}

unsi gned short ch=rxCh;

if (rxCh>3){ch=ch-4;}

wr - >r xChannel [r xCh] - >gr oupCount =((buf f er
& (OxFF << (8*ch))) >> (8*ch));

/1 Set event to wake up channel thread

r xBuf f er Ful | [rxCh] . Set Event () ;

ReadWaveRunner (0x14, &buffer);

}

g ——y

/[If interrupt is due to a Tx FIFO interrupt
if ((status & 0x2)!=0)

~_~——

unsi gned | ong FI FOSt at us;
unsi gned short txChFlI FO
/1 Read Rx FIFO Interrupt Status
ReadWaveRunner (_TRANSM T_FI FO_| NTERRUPT_STATUS,
&FI FOst at us) ;
/I For each rx channel
for (int txCh=0; txCh<wr->txChannel sCount; txCh++)

// Check to see if the channel has caused the
i nterrupt

t XChFI FO=(FI FOSt at us & (OxF << (4*txCh))) >>
(4%t xCh);

i f (txChFI FO =0)

{

t xChannel I nf o[t xCh] . FI FO nt errupt St at us=t r ue;

t xChannel | nf o[t xCh] . FI FO nt er r upt Mask=t xChFI FG,

}
}
}
/1 1f interrupt is due to a transmt channel DNA conpl ete
if ((status & 0x8)!=0)
{

/I For every txChannel
for (int txCh=0; txCh<wr->txChannel sCount; txCh++)

/11f the channel was the cause of the interrupt
if((status & (Oxl<< (12+txCh)))!=0)
{
//increase the channel counter of
transfered bl ocks
wr - >t xChannel [t xCh] - >gr oupsTr ansf er ed++;
unsi gned | ong buffer;

if (txCh<4)
{

ReadWaveRunner (0x18, &buffer);
}
el se
{

ReadWaveRunner (0x1C, &buffer);
}

152

unsi gned short ch=t xCh;
if (txCh>3){ch=ch-4;}
wr - >t xChannel [t xCh] - >gr oupCount =((buf f er
& (OxFF << (8*ch))) >> (8*ch));
t xBuf f er Enpt y[t xCh] . Set Event () ;
}

}
}
/1 Enabl e interrupts

Wit eWaveRunner (_GLOBAL_| NTERRUPT MASK, O0x1);
}

//**

/1 This is the main "parent" thread which controls
/1 the Rx and Tx channel s threads.

//**

U NT mai nRxTxThr ead(LPVO D pPar am

{
Cwhd* parent Wndow = (CWd*) pParam

/I'As a first step, allocate nonmory space for the channels
wr - >t hr eadsReady=0;

/1 Try to configure the card
int error=wr->Configure();

if (error)

{
wr - >C ose();
CString disp;
di sp="WaveRunner not properly configured.\n Process wl|

abort.";

}

/1 Configure channels by passing the paraneters stored in the
..info tables
/1 Then start channel s threads

return error;

for (int channel =0; channel <wr - >maxChannel s; channel ++)

{

i f (channel <wr - >t xChannel sCount)

{
t xChannel St at us[channel] . st at us-
>Set W ndowText ("I nitializing");
wr - >t xChannel [channel] -
>set Frequency(t xChannel | nf o[channel]. frequency);
wr - >t xChannel [channel] - >k=t xChannel | nf o[channel] . k;
wr - >t xChannel [channel] -
>set Dat aRat e(t xChannel | nf o[channel] . dat arate);
wr - >t xChannel [channel] -
>at t enuat i on=t xChannel I nf o[channel] . att enuati on;
t xChannel | nf o[channel] . FI FO nt er r upt St at us=f al se;
t xChannel | nf o[channel] . FI FO nt er r upt Mask=0;
char f Nane[80];
i nt pos=0;

153

for (int letter=0;
| etter<txChannel I nfo[channel].fil eNane. GetLength(); |etter++)

{

f Nane[pos] =t xChannel | nf o[channel].fil eNane[letter];
pos++;
if
(txChannel I nfo[channel].fil eName[| etter]==92)

f Nanme[pos] =92;
pos++;
}
}
f Nane[pos] =0;
wr - >t xChannel [channel] - >dat aFi | eNane=f Nane;
wr - >t xChannel [channel] - >gr oupsLoaded=0;
wr - >t xChannel [channel] - >gr oupsTr ansf er ed=0;

wr - >t xChannel [channel] - >t er mi nat ePr ocess=f al se;
Af xBegi nThread(t xThr ead, LPVO D(channel)) ;

}

el se

{
}
}

for (int channel =0; channel <wr - >r xChannel sCount ; channel ++)

wr - >t xChannel [channel] - >set Dat aRat e(0) ;

r xChannel St at us[channel]. st at us-
>Set W ndowText ("I nitializing");
wr - >r xChannel [channel] -
>set Frequency(rxChannel | nf o[channel]. frequency);
wr - >r xChannel [channel] - >k=r xChannel | nf o[channel] . k;
wr - >r xChannel [channel] -
>dat aRat e=r xChannel | nf o[channel] . dat ar at e;
r xChannel | nf o[channel]. FI FO nt err upt St at us=f al se;
r xChannel | nf o[channel]. FI FO nt er r upt Mask=0;
char f Nane[80];
i nt pos=0;
for (int letter=0;
| etter<rxChannel | nfo[channel].fil eName. Get Length(); |etter++)
{
f Name[pos] =r xChannel | nfo[channel] . fil eNang[l etter];
p03++;
i f (rxChannel I nfo[channel].fil eName[letter]==92)

f Nane[pos] =92;
pos++;

}

}
f Nane[pos] =0;
wr - >r xChannel [channel] - >dat aFi | eNane=f Nane;
wr - >r xChannel [channel] - >gr oupsTr ansf er ed=0;
wr - >r xChannel [channel] - >gr oups Saved=0;
wr - >r xChannel [channel] - >t er mi nat ePr ocess=f al se;
Af xBegi nThr ead(r xThr ead, LPVO D(channel));
}

[IWait until all threads are ready to transmt or receive

154

unsi gned | ong regBuffer;

al | Channel sReady. Reset Event () ;

Wi t For Si ngl eCbj ect (al | Channel sReady, | NFI NI TE)

//When all channels are ready, enable transmt and receive
i f (wr->rxTxEnabl e)

{

wr - >enabl eRxTx() ;

/1 Loop that checks if there are still active channels
/lor if a stop signal has been issued
. Wi t For Si ngl ebj ect (al | Channel sDone, | NFI NI TE)

/[1while (rxTxEnabl e & (rxThreadsRunni ng+t xThr eadsRunni ng>0)) ;

//When activity nust stop, as a first action stop the card
activity

wr - >di sabl eRxTx() ;

/11f some channels are still running but a term nate signa
been i ssued

//take care that all channel activity stops

i f(wr->rxThreadsRunni ng+wr - >t xThr eadsRunni ng>0)

{
for (int channel =0; channel <wr - >r xChannel sCount; channel ++)
{
wr - >r xChannel [channel] - >t er mi nat ePr ocess=t r ue;
}
for (int channel =0; channel <wr - >t xChannel sCount; channel ++)
wr - >t xChannel [channel] - >t er m nat ePr ocess=tr ue;
}
}

/1 Make sure that all channels have finished
CString di spl ayMessage="1Inactive";
for (int channel =0; channel <wr - >r xChannel sCount; channel ++)
{
whi | e(wr - >r xChannel [channel] - >t hr eadRunni ng) ;
rxBuf f er Ful | [channel] . Reset Event () ;

}

for (int channel =0; channel <wr - >t xChannel sCount; channel ++)

whi | e(wr - >t xChannel [channel] - >t hr eadRunni ng) ;
t xBuf f er Enpt y[channel] . Reset Event () ;

/11f all channel activity has been term nated but
/I no stop signal has been issued, notify the parent w ndow
i f(wr->rxTxEnabl e)

{

}
/1}
return error;

par ent W ndow >Post Message(WM PROCESSES FI NI SHED) ;

}

//**

/1 This is the thread which runs for every RECEPTI ON channel

//**

U NT rxThread(LPVO D pPar am
{

wr - >r xThr eadsRunni ng++;

155

i nt channel =i nt (pParanj ;

RxChannel * r Channel =wr - >r xChannel [channel] ;
r Channel - >t hr eadRunni ng=t r ue;

r Channel - >gr oupsTr ansf er ed=0;

r Channel - >gr oupsSaved=0;

r Channel - >gr oupCount =1;

CFile targetFile;
CString tFil e=rChannel - >dat aFi | eNane. Left (r Channel -
>dat aFi | eNane. Get Lengt h() - 3) +" TVF";

int fileOpenError=targetFile.Open(tFile, CFile::npdeCreate |
CFile::nodeWite);
if (fileQOpenkError==0)
{
CString nessage;
nessage. For mat (" Coul d not open target file for channel
#9%R2i .\ nChannel will abort.", channel);
Af xMessageBox(message) ;
}

cSection. Lock();
wr - >t hr eadsReady++;

i f (w->threadsReady==w - >r xChannel sCount +wr - >t xChannel sCount)

al | Channel sReady. Set Event () ;
}
cSecti on. Unl ock();
r xChannel St at us[channel]. st at us- >Set W ndowText ("ldle...");
bool rxBufferOver Fl ow=f al se;
if (fileCpenError!=0)

unsi gned short groupCount=1;
unsi gned | ong rxG oupSi ze=w - >bl ockSi ze*wr -
>r xBl ocksPer Gr oup;
bool al readySet St at us=f al se;
/1 Loop to be executed while there is data to save
while ((w->rxTxEnable) && (!rxBufferOverFl ow))

{

Wi t For Si ngl eQbj ect (rxBufferFull [channel], | NFIN TE);
rxBuf f er Ful | [channel] . Reset Event () ;
i f (rChannel - >gr oupsTr ansf er ed>r Channel -
>gr oupsSaved+w - >r xG oupsPer Channel - 1)

{

r xBuf f er Over Fl ow=t r ue;

i f (rxChannel I nfo[channel]. FI FO nt errupt St at us)
{

r xBuf f er Over FI ow=t r ue;
if ((wr->rxTxEnable) && (!rxBufferOverFl ow))

{
unsi gned | ong* buff er Pos=r Channel -
>dat aBuf f er +(gr oupCount - 1) *r xGr oupSi ze;
targetFile. Wite(bufferPos, 4*rxG oupSi ze) ;
r Channel - >gr oupsSaved++;
gr oupCount ++;

156

i f (groupCount>wr ->r xG oupsPer Channel)
gr oupCount =1,
i f(!al readySet St at us)

{
r xChannel St at us[channel]. st at us-
>Set W ndowText (" Receiving...");
al r eadySet St at us=t r ue;
}

}

}

targetFile.d ose();

if (('rxBufferCQverFlow) && (rChannel->k>1))
Denodul at e(channel , true);

/1 CFile::Remove(tFile);

r Channel - >t hr eadRunni ng=f al se;

cSection. Lock();

wr - >r xThr eadsRunni ng- -;

i f (w->rxThreadsRunni ng+w - >t xThr eadsRunni ng==0)

al | Channel sDone. Set Event () ;
}
cSecti on. Unl ock();
CString di spl ayMessage="1Inactive";
i f (rxChannel I nfo[channel]. FI FO nt err upt Mask)

{
swi tch (rxChannel I nf o[channel]. FI FO nt er r upt Mask)
{
case 1:
di spl ayMessage="FI FO Underfl ow';
br eak;
case 8:
di spl ayMessage="FI FO Overfl ow';
br eak;
defaul t:
di spl ayMessage="1 nactive";
}

r xChannel St at us[channel] . st at us- >Set W ndowText (di spl ayMessage) ;
r xChannel St at us[channel]. progr ess- >Set Pos(0) ;
return O;

}

//***

/1 This is the thread which runs for every TRANSM SSI ON channel

//***

U NT t xThread(LPVO D pPar an
{
/1 Acqui re paraneters
i nt channel =i nt (pParanj;
TxChannel * t Channel =wr - >t xChannel [channel | ;
t Channel - >t hr eadRunni ng=t r ue;
t Channel - >gr oupsLoaded=0;
t Channel - >gr oupsTr ansf er ed=0;
t Channel - >gr oupCount =1;
cSection. Lock();

157

wr - >t X Thr eadsRunni ng++;

cSecti on. Unl ock();

/I Updat e status box

t xChannel St at us[channel]. st at us- >Set W ndowText (" Modul ating...");
// Modul ate data into | and Q channel s

CString txFi|l eNanme=Modul at e(channel) ;

t xChannel St at us[channel] . pr ogr ess- >Set Pos(0) ;

bool buffer Under Fl ow=f al se;

i f (w->rxTxEnabl e)

{
t xChannel St at us[channel]. st at us-
>Set W ndowText (" Transmtting ...");
CFile txFile;
txFi | e. Open(txFi | eName, CFi | e: : nndeRead) ;
unsi gned | ong total Goups=ceil (txFile.GetLength()/(4*w -
>bl ockSi ze*wr - >t xBl ocksPer Group)) ;

unsi gned int synbol sRead=t xFi | e. Read(t Channel -
>dat aBuf f er, 4*wr - >t xChannel Si ze) / 4;

/[llnitially fill all the channel buffer with data

i f (synbol sRead<wr - >t xChannel Si ze)

{
for (int synbol =synbol sRead; symnbol <wr -
>t xChannel Si ze; synbol ++)

{
}
}
cSection. Lock();
wr - >t hr eadsReady++;

i f (wr->threadsReady==w - >r xChannel sCount +wr -
>t xChannel sCount)

*(t Channel - >dat aBuf f er +synbol) =0;

al I Channel sReady. Set Event () ;
}
cSecti on. Unl ock();
t Channel - >gr oupsLoaded=wr - >t xG oupsPer Channel ;
unsi gned short groupCount =1;
unsi gned short txG oupSi ze=wr - >bl ockSi ze*wr -
>t xBl ocksPer Gr oup;
/1 Loop to be executed while there is data to add
while ((wr->rxTxEnable) &&
(txFile.GetPosition()<txFile.GetLength()) && (!bufferUnderFl ow))
{
. Wi t For Si ngl eCbj ect (t xBuf f er Enpt y[channel],
| NFI NI TE) ;
t xBuf f er Enpt y[channel] . Reset Event () ;
i f (tChannel ->groupsTransfered>t Channel -
>gr oupsLoaded+w - >t XG oupsPer Channel - 1)

buf f er Under Fl ow=t r ue;

i f (txChannel I nfo[channel].FlI FQO nterrupt St at us)
i f (tChannel ->groupsTransfered<2)

{

t xChannel | nf o[channel] . FI FO nt errupt St at us=f al se;

158

t xChannel | nf o[channel] . FI FO nt er r upt Mask=0;
}

el se
buf f er Under Fl ow=t r ue;
}
if ((wr->rxTxEnable) && (!bufferUnderFl ow))

unsi gned | ong* buf f er Pos=t Channel -
>dat aBuf f er +(gr oupCount - 1) *t xGr oupSi ze;
i f (tChannel ->k==1)txFil e. SeekToBegi n();
unsi gned | ong
synmbol sRead=t xFi | e. Read(buf f er Pos, 4*t xG oupSi ze)/ 4;
i f (synbol sRead<t xGroupSi ze)

for (int synbol =synbol sRead,;
symbol <t xG oupSi ze; synbol ++)

*(t Channel - >dat aBuf f er +(gr oupCount -
1) *t xG oupSi ze+synbol) =0;
}

t xChannel St at us[channel] . progr ess-
>Set Pos(100*t Channel - >gr oupsLoaded/ t ot al G oups) ;
gr oupCount ++;
i f (groupCount >w - >t xG oupsPer Channel)
gr oupCount =1;
t Channel - >gr oupsLoaded++;
}
}
txFile. Cose();
/1 CFile::Renove(txFil eNane);
/1 Clearing buffers after all data has been transfered
for (int group=1; group<=w ->tXxG oupsPer Channel; group++)
{
i f (wr->rxTxEnabl e)

{

Wi t For Si ngl eQbj ect (t xBuf f er Enpt y[channel], I NFI NI TE) ;
t xBuf f er Enpt y[channel] . Reset Event () ;
}

for (int synbol =0; synbol <t xGroupSi ze; synbol ++)
{

*(t Channel - >dat aBuf f er +(gr oupCount -
1) *t xG oupSi ze+synbol) =0;

gr oupCount ++;
i f (groupCount>w ->t xG oupsPer Channel) groupCount =1;

}
t xChannel St at us[channel] . pr ogr ess- >Set Pos(100) ;

}

cSection. Lock();
wr - >t xThr eadsRunni ng- -;
i f (wr->rxThreadsRunni ng+wr - >t xThr eadsRunni ng==0)

al | Channel sDone. Set Event () ;
159

}

cSecti on. Unl ock();
CString di spl ayMessage="1Inactive";
i f (txChannel I nf o[channel]. FI FO nt errupt Mask)

{
swi tch (txChannel I nfo[channel]. FI FO nt errupt Mask)
{
case 1:
di spl ayMessage="FI FO Underfl ow';
br eak;
case 8:
di spl ayMessage="FI FO Overfl ow';
br eak;
defaul t:
di spl ayMessage="1 nactive";
}
}

t xChannel St at us[channel] . st at us- >Set W ndowText (di spl ayMessage) ;
t xChannel St at us[channel]. pr ogr ess- >Set Pos(0) ;
t Channel - >t hr eadRunni ng=f al se;
return O;

MODEMOD.CPP

#i ncl ude " St dAf x. h"
#i ncl ude " Mat h. h"
#i ncl ude "direct.h"

// Actual Modul ation - Denpdul ati on routines decl arations
CString nPSK Modul ate(int);
voi d nPSK _Denodul ate(int, bool);

/1 NModul ati on - Denopdul ation routines entry points
/1 Use these entry points just to select the appropriate
/'l routines of your code.

CString Mdul ate(int txChannel Num
{

}

voi d Denodul at e(i nt rxChannel Num bool createlLog)

return nPSK _Modul at e(t xChannel Num ;

nPSK_Denodul at e(r xChannel Num creat eLog);
}

/1 M PSK MODULATI ON ROUTI NE
/1 This routine takes the data fromthe transm ssion file
/1 and creates the file of synbols

CString nmPSK_Modul at e(int txChannel Num

{
unsi gned short Anplitude=w ->maxAnplitude/ w -
>t xChannel [t xChannel Nuni - >at t enuat i on;

160

short header[24]={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,1, -
1,1,-1,1};

short k=wr->t xChannel [t xChannel Nunj - >k;

char Mepow(2, k) ;

short symbol sPer Packet =wr - >bl ockSi ze- 32;

short byt esPer Packet =synbol sPer Packet *k/ 8;

char dat aBufferln[w ->bl ockSi ze/ 2] ;

i nt dat aBufferQut[w->bl ockSi ze];

U NT actual Byt esRead, actual Synbol sToWite;

CFile sourceFile, targetFile;

int I, Q

char sanpl eBuffer;

float initial Phase;

unsi gned | ong nBuffer;

unsi gned short dataMask, bytesToRead, synbol sToWite;

CString sFil e=w - >t xChannel [t xChannel Nunj - >dat aFi | eNane;
CString tFile=sFile.Left(sFile.GetLength()-3)+"TM";
targetFile. Open(tFile, CFile::npdeCreate | CFile::mdeWite);

/1 1f test tone selected, sinply wite a series of 1=1 and Q=0
/1 and exit
if (k==1)

i nt buffer[9000];
for (int k=0; k<9000; k++)
buf f er [k] =Anpl i t ude;
targetFile. Wite(buffer, 36000);
targetFile. d ose();
t xChannel St at us[t xChannel Nunj . pr ogr ess- >Set Pos(100) ;
return tFile;

}

sourceFil e. Open(sFil e, CFi |l e: : nodeRead) ;

switch (k)
{
case 2:
byt esToRead=1;
synmbol sTOWi t e=4;
dat aMask=0x3;
i ni ti al Phase=0;
br eak;
case 3:
byt esToRead=3;
synbol sTOWit e=8;
dat aMask=0x7;
i nitial Phase=0;
br eak;
case 4.
byt esToRead=1;
synbol sToWite=2;
dat aMask=0xF;
i niti al Phase=0;

}

/1 Find nunmber of data packets in the file
161

fl oat
packet Num=f | oat (sourceFil e. GetLength())/fl oat (byt esPer Packet);
unsi gned int total Packet s=ceil (packet Nunj;
i nt packet =0;
/1 Wiile RXTx is enabl ed and packets renaining to be nodul ated
while ((w->rxTxEnabl e) & (packet <t otal Packets))
{
/1 Update progress bar
t xChannel St at us[t xChannel Nunj . pr ogr ess- >Set Pos(
100* (packet +1) / t ot al Packets);
/1 Fill data buffer
act ual Byt esRead=sour ceFi | e. Read(dat aBuf ferl n,
byt esPer Packet) ;
act ual Synbol sToWite=ceil (act ual Byt esRead*8/ k) ;
/1 Wite packet header using BPSK nodul ation
for (int sanple=0; sanple<24; sanple++)
dat aBuf f er Qut [sanpl e] =Anpl i t ude* header [sanpl €] ;
/1 Wite nunber of sanples per packet using QPSK nodul ation
for (sanmple=0; sanpl e<8; sanpl e++)

sanpl eBuf fer= (actual Synbol sToWite & (0x3 <<
(2*sanple))) >> (2*sanple);
| =Anpl i t ude*cos(2*pi *sanpl eBuffer/ 4 + initial Phase);
Q=Anpl i tude*si n(2*pi *sanpl eBuffer/4 + initial Phase);
dat aBuf f er Qut [sanpl e+24] =I | (Q<<16);
}
/1 Wite actual data in M PSK
unsi gned int bytel ndexl n=0, synbol | ndexQut =0;
whi | e (byt el ndexl| n<act ual Byt esRead)
{
// Form t he integer
nBuf f er =0;
for (short byte=0; byte<bytesToRead; byte++)

i f (bytelndexl n<actual Byt esRead)
{

nBuf f er =nBuf f er +(dat aBuf f er I n[byt el ndexI n] << (8*byte));
byt el ndex| n++;
}
}

/1 For each synbol in the buffer calculate and store

the I and Q channel s
for (unsigned short synbol =0; synbol <synbol sToWite;

symnmbol ++)

{
sanpl eBuf fer=(nBuffer & (dataMask <<
(k*synbol))) >> (k*synbol);
| =Anpl i t ude* cos(2*pi *sanpl eBuffer/ M +
i nitial Phase);
Q=Anmpl i t ude*si n(2*pi *sanpl eBuffer/ M +

i nitial Phase);
dat aBuf f er Qut [32+synbol | ndexQut] =1 | (Q<<16);

symbol | ndexQut ++;
}

}
/1 Wite buffer to target file
162

targetFile. Wite(dataBufferQut,

4* (32+act ual Synbol sToWite));

}

packet ++;

sourceFile. d ose();

targetFile.d ose();

t xChannel St at us[t xChannel Nunj . pr ogr ess- >Set Pos(100) ;
return tFile;

/1 M PSK DEMODULATI ON ROUTI NE

/1 Thi

s routine translates the previouly stored sanples

/1 into synbols and bits

voi d nPSK _Denodul ate(int rxChannel Num bool createlog)

{
")

r xChannel St at us[r xChannel Nunj . st at us- >Set W ndowText (" Denodul ati ng

r xChannel St at us[r xChannel Numi . pr ogr ess- >Set Pos(0) ;
RxChannel * r Channel =wr - >r xChannel [r xChannel Nunj ;
char k=r Channel - >k;

CString tFil e=rChannel - >dat aFi | eNane;

CString sFile=tFile.Left(tFile.GetLength()-3)+"TM";

CFile sourceFile, targetFile;
CstdioFile | ogFile;

sourceFil e. Open(sFile, CFile::npdeRead);
targetFile. Open(tFile, CFile::npdeCreate | CFile::mdeWite);
if (createlog)
{
CString | ogFil eNane;
| ogFi | eNane. For mat (" RxChannel #%lu

[og. txt", rxChannel Num+1) ;

CFile:

| ogFi | e. Open(| ogFi | eNane, CFil e: : nodeWite |
: modeCreat e) ;
logFile.WiteString(" Packet ## Found at Phase of fset

Synced at ## synbol s\n");

| OgFil €. WiteString("--------cccmmmmmmmmmmaaaae e
---------------- \n");

unsi gned int total Sanpl es=sourceFil e. Get Length()/4;

/1 Set variabl es
float M-pow(2, k),
angl ePer Synbol =2*pi / M
power Thr eshol d=50,
rati oThreshol d=11,
of f set Thr eshol d=4*pi / 180;
unsi gned short sanpl i ngPoi nt =2,
synbol sPer Packet ,
sanpl esPer Synbol =4;// S. O S. rChannel -

>dat aRat e

unsi gned int packet Num=0, f oundAt =0, syncedAt =0;
short sanpl eBuffer[8192][2];

char synbol Buf fer[1024];

char dat aBuffer[1024];
163

i nt actual Sanpl esRead,;

/1l Create Sync Sequence
short Barker[13]={1,1,1,1,1,-1,-1,1,1,-1,1,-1, 1};
short syncSequence[104];
for (int i=0; i<13; i++)
for (int j=0; j<sanpl esPerSynbol; j++)
syncSequence|[i *sanpl esPer Synbol +j] =Barker[i];

unsi gned short synbol sToRead, bytesToWite;
char dat aMask;
float initial Phase;
swi tch (k)
{
case 2:
synbol sToRead=4;
byt esToWit e=1;
dat aMask=0x3
i nitial Phase=0;
br eak;
case 3:
synbol sToRead=8;
byt esToWit e=3;
dat aMask=0x7;
i nitial Phase=0;
br eak;
case 4.
synmbol sToRead=2;
byt esToWit e=1;
dat aMask=0xF;
i ni ti al Phase=0;

}

i nt current Sanpl e=0;
/'l For every received packet
whi | e (current Sanpl e<t ot al Sanpl es)

/1 Find where actual data starts being transmtted,

/1 by nmeasuring the average power

i nt aver agePower =0;

whil e ((averagePower <power Threshol d) &&
(current Sanpl e<t ot al Sanpl es))

{
act ual Sanpl esRead=sour ceFi | e. Read(sanpl eBuf f er
4* sanpl esPer Synbol)/ 4;
i f (actual Sanpl esRead==0) break;
aver agePower =0;
for (int i=0;i<actual Sanpl esRead; i ++)

{
unsi gned i nt
sanpl ePower =sqrt (pow(sanpl eBuffer[i][0], 2) +tpow(sanpl eBuffer[i][1],2));
aver agePower =aver agePower +sanpl ePower ;
}

aver agePower =aver agePower / act ual Sanpl esRead;
cur rent Sanpl e=cur r ent Sanpl e+act ual Sanpl esRead;

}
i f (actual Sanpl esRead==0) break;
164

/1 Advance by one synbol

act ual Sanpl esRead=sour ceFi | e. Read(sanpl eBuf f er,
4*sanpl esPer Synbol)/ 4;

i f (actual Sanpl esRead==0) break;

cur rent Sanpl e=curr ent Sanpl e+act ual Sanpl esRead;

/1 Synchroni ze i n phase
short phaseH t s=0;
fl oat phaseOfset=0, previousOifset=0, total Ofset=0;
previ ousO f set =at an2(sanpl eBuf f er [2* sanpl esPer Synbol - 1] [1],
sanpl eBuf f er [2*sanpl esPer Synbol -
1]101);
whi | e (phaseH t s<6)

act ual Sanpl esRead=sour ceFi | e. Read(sanpl eBuf f er,
4*sanpl esPer Synbol)/ 4;
i f (actual Sanpl esRead==0) break;
cur rent Sanpl e=cur r ent Sanpl e+act ual Sanpl esRead;
phaseO f set =0;
for (int i=0; i<actual Sanpl esRead; i ++)

phaseO f set =phaseO f set +at an2(sanmpl eBuffer[i][1],
sampl eBuffer[i][0]);
phaseO f set =phasef f set / act ual Sanpl esRead;
i f (abs(phaseOfset-previ ousOfset) <of fset Threshol d)

phaseHi t s++;
total Of f set =t ot al Of f set +phaseCf f set ;

}
el se
{
phaseHi t s=0;
total O f set =0;
}

previ ousO f set =phase f set ;

}

i f (actual Sanpl esRead==0) break;
phaseO f set =t ot al Of f set/ 6;
packet Numk+;

f oundAt =cur r ent Sanpl e;

/1 Synchroni ze in tine;

bool syncFound=f al se;

i nt syncPosition;

act ual Sanpl esRead=sour ceFi | e. Read(sanpl eBuf f er,

13*4*sanpl esPer Synbol)/ 4;

i f (actual Sanpl esRead==0) break;

doubl e prevCorr=0;

while ((!syncFound) && (actual Sanpl esRead>0))

{
doubl e power=0, nornmalizedCorr=0, corr=0;
for (int i=0; i<13*sanplesPerSynbol; i++)

{
i nt
mag=sqrt (pow(sanpl eBuffer[i][0], 2) +pow sanpl eBuffer[i][1],2));

165

doubl e angl e=at an2(sanpl eBuffer[i][1],
sanpl eBuffer[i][0])-phaseO fset;
corr=corr +mag*cos(angl e) *syncSequence[i];
power =power +nag;
}
corr=abs(corr);
power =power/ 13;
nor mal i zedCorr =corr/ power ;
if ((normalizedCorr<prevCorr) &&
(power >power Threshol d) && (prevCorr>rati oThreshol d))

{
syncFound=t r ue
syncPosi ti on=current Sanpl e-1
cur rent Sanpl e=syncPosi ti on+13*sanpl esPer Synbol
sourceFil e. Seek(-4,CFile::current);
}
el se
{

prevCorr=normalizedCorr;
cur rent Sanpl e++;
for (int i=0; i<l13*sanplesPerSynbol-1;i ++)
{
sanmpl eBuf fer[i][0] =sanpl eBuffer[i+1][0];
sampl eBuf fer[i][1] =sanpl eBuffer[i+1][1];
}
short tnpBuffer[2];
act ual Sanpl esRead=sour ceFi | e. Read(t npBuffer,
4)/ 4;
i f (actual Sampl esRead==0) break
sanpl eBuf f er [13* sanpl esPer Synbol -
11[0] =t npBuffer[0];
sanpl eBuf f er [13* sanpl esPer Synbol -
1] [1] =t npBuffer[1];
}

}
i f (actual Sanpl esRead==0) break;
syncedAt =syncPosi ti on;

/1 Find the nunber of synbols per packet
/1 Always nodul ated at QPSK

act ual Sanpl esRead=sour ceFi | e. Read(sanpl eBuf f er, 32* sanpl esPer Synbo
1)/ 4;
i f (actual Sanpl esRead<2*sanpl esPer Synbol) break
cur rent Sanpl e=cur r ent Sanpl e+act ual Sanpl esRead;
synbol sPer Packet =0;
for (int i=0; i<8; i++)

{
doubl e
phase=at an2(sanpl eBuf f er[i *sanpl esPer Synbol +sanpl i ngPoi nt][1],

sanpl eBuf fer[i *sanpl esPer Synbol +sanpl i ngPoi nt][0]) - phaseX f set ;
i f (phase<0) phase=phase+2*pi
i f (phase>2*pi) phase=phase-2*pi
fl oat deci si on=2*phase/ pi ;
i nt iDecision;
if (ceil(decision)-decision<0.5)

166

i Deci si on=cei | (deci si on);
el se
i Deci si on=f| oor (deci si on);
i f (iDecision==4) iDecision=0;
synbol sPer Packet =synbol sPer Packet | (i Decision <<
2*i);
}
if (createlog)
{
CString | ogBuffer
| ogBuf f er. For mat (" %2u%d2u%d2. 2f %42u%d2u\ n",

packet Num f oundAt , phaseOf f set, syncedAt , synbol sPer Packet) ;
logFile.WiteString(logBuffer);
}

/1 Denopdul ate the packet

act ual Sanpl esRead=sour ceFi | e. Read(sanpl eBuf fer,
4* synbol sPer Packet *sanmpl esPer Synbol)/ 4;

i f (actual Sanpl esRead<synbol sPer Packet *sanpl esPer Synbol)
br eak;

cur rent Sanpl e=cur r ent Sanpl e+act ual Sanpl esRead;

/1 Find the synbols

for (int i=0; i<synbolsPerPacket; i++)

{
doubl e
phase=at an2(sanpl eBuf f er [i *sanpl esPer Synbol +sanpl i ngPoi nt][1],

sanpl eBuf f er [i *sanpl esPer Synbol +sanpl i ngPoi nt][0])
- phaseO f set
i f (phase<0) phase=phase+2*pi
i f (phase>2*pi) phase=phase- 2*pi
fl oat deci si on=(phase-initial Phase)/angl ePer Synbol ;
int iDecision;
if (ceil(decision)-decision<0.5)
i Deci si on=cei | (deci sion);
el se
i Deci si on=f| oor (deci si on);
i f (iDecision==M iDecision=0;
synbol Buf fer[i]=i Deci sion
}
/1 Construct the bytes
U NT byt eCount =0, synbol sCount =0;
whi | e (synbol sCount <symnbol sPer Packet)

/1 Form the integer
i nt nBuf f er=0;
for (short symbol =0; synbol <synbol sToRead; synbol ++)

{
i f (synbol sCount <synbol sPer Packet)

{
nBuf f er =nBuf f er

i nt (symbol Buf f er [synbol sCount] <<(k*synbol));
symnmbol sCount ++;
}

167

byt e++)

/1 Find and store the correspondi ng bytes
for (unsigned short byte=0; byte<bytesToWite;

{

dat aBuf f er [byt eCount] =(nBuf fer & (OxXFF <<

(8*byte))) >> (8*byte);

}

byt eCount ++;

}
}

targetFile. Wite(dataBuffer, byteCount);
r xChannel St at us[r xChannel Num . pr ogr ess-
>Set Pos(100*curr ent Sanpl e/ t ot al Sanpl es) ;

if (createLog) logFile.d ose();
sourceFile. d ose();
targetFile.d ose();

MEMORY_MAP.H

//*************************************

[1* PCl CONFI GURATI ON SPACE REG STERS *

//*************************************

#defi ne _RECEI VE_DESTI NATI ON_ADDRESS 0x048
#def i ne _RECEI VE_DVA CONTROL
#defi ne _IOWRITE

#defi ne _MEMORY_WRI TE
Reconmended

#def i ne _ CONFI GURATI ON_WRI TE
#def i ne _DVA ADDRESS | NCREVENT
#def i ne 64 Bl T_TRANSFER ENABLE
set

#def i ne _ SVART_DNA

#def i ne _ TRANSM T_SOURCE_ADDRESS
#def i ne _TRANSM T_DMA CONTRCL
#def i ne _ |1 O_READ

#defi ne _MEMORY_READ

Recomended

#defi ne _ CONFI GURATI ON_READ

/Il _DVA ADDRESS | NCRENVENT

/1 _64_BI T_TRANSFER ENABLE

/1 _ SVART_DNA

//****************************

/1* PCl MEMORY MAP REG STERS *

//****************************

#def i ne
#def i ne
#def i ne
#defi ne

_RCV_CHANNELS
_RCV_CHANNELS

0x04C
0x40
ox70 //

0xb0
0x08
0x04 // Must

0x01

0x050

0x054
0x020
0x060 //

0x0A0
as above
as above
as above

GROUP_COUNT 0x000010
GROUP_COUNT 0x000014

30
7 4

“TRX_CHANNELS_3_0_GROUP_COUNT 0x000018
7 4

_TRX_CHANNELS_

168

GROUP_COUNT 0x00001C

be al ways

#def i ne

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne
#defi ne
#def i ne
#def i ne
#def i ne
#def i ne
#defi ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne
[| #def
| | #def
[| #def
[| #def
/| #def
[| #def

ne
ne
ne
ne
ne
ne

_FI RVMWARE_VERSI ON

_BOARD_STATUS
_TX_PLL_STATUS

DI SCRETE_| NPUT_3
DI SCRETE_| NPUT_2
" DI SCRETE_I NPUT_1
DI SCRETE_I NPUT_0

I NTERRUPT_STATUS
GLOBAL| NTERRUPT

_TX_PROCESS| NG_COMPLETE
_RX_PROCESS| NG_COMVPLETE

_AUTO _DVA_ABORT | D
_DVA_ABORT_DETECTED
_TX_AREA_7_COVPLETE
_TX_AREA_6_COVPLETE
_TX_AREA_5_COVPLETE
_TX_AREA_4_COVPLETE
_TX_AREA_3_COWPLETE
_TX_AREA_2_COVPLETE
X_AREA_1_COMPLETE
X_AREA_0_COMPLETE
_RX_AREA_7_COVPLETE
_RX_AREA_6_COVPLETE
_RX_AREA_5_COVPLETE
_RX_AREA_4_COVPLETE
_RX_AREA_3_COVPLETE
_RX_AREA_2_COVPLETE
_RX_AREA_1_COVPLETE
_RX_AREA_0_COVPLETE
_TX_DVA_COVPLETE
_RX_DVA_COWPLETE
_TX_FI FO_I NTERRUPT
_RX_FI FO_| NTERRUPT

_T
_T

_RECEI VE_FI FO_| NTERRUPT_STATUS

_FI FO_UNDERFLOW

_FI FO_EMPTY

_FI FO_EXCEEDS_THRESHOLD

_FI FO_OVERFLOW

_TRANSM T_FI FO_| NTERRUPT _STATUS

_MEMORY_AREA 7
_MEMORY_AREA_6
_MEMORY_AREA 5
_MEMORY_AREA_4
_MEMORY_AREA_3
_MEMORY_AREA 2

169

0x000020

0x008
0x004
0x002
0x001

0x000024
0x010

0x000028

0x80000000
0x04000000
0x02000000

0x01E00000
0x00100000
0x00080000
0x00040000
0x00020000
0x00010000
0x00008000
0x00004000
0x00002000
0x00001000
0x00000800
0x00000400
0x00000200
0x00000100
0x00000080
0x00000040
0x00000020
0x00000010

0x00000008
0x00000004

0x00000002
0x00000001

0x00002C

0b0100

0xF0000000
0x0F000000
0x00F00000
0x000F0000
0x0000F000
0x00000F00
0x000000F0
0x0000000F
0b0001

0b0010

0b1000

0x000030

0xF0000000
0x0F000000
0x00F00000
0x000F0000
0x0000F000
0x00000F00

/[#def i
/[#def i
/[#def i
/| #def i
/| #def i
/| #def i

#def i
#def i
#def i

#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def

#def i

ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

/| #def i
/| #def i
/| #def i
/[#def i
I [#def i
/| #def i
/| #def i
/| #def i

#def
#def
#def
#def

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne

GLOBAL| NTERRUPT_MASK
_ENABLE_I NTERRUPTS
"Dl SABLE_| NTERRUPTS

_MEMORY_AREA 1
_MEMORY_AREA 0
_FI FO_UNDERFLOW

_FI FO_EMPTY

_FI FO_EXCEEDS_THRESHOLD

_FI FO_OVERFLOW

I NTERRUPT_MASK

_DVA_ABORT_DETECTED ENABLE
_TX_AREA_7_COVPLETE_ENABLE
“TX_AREA_6_COVPLETE_ENABLE
_TX_AREA_5_COVPLETE_ENABLE
_TX_AREA_4_COVPLETE_ENABLE
_TX_AREA_3_COVPLETE_ENABLE
_TX_AREA_2_COVPLETE_ENABLE
_TX_AREA_1_COVPLETE_ENABLE
_TX_AREA_0_COVPLETE_ENABLE
_RX_AREA_7_COVPLETE_ENABLE
_RX_AREA_6_COVPLETE_ENABLE
_RX_AREA_5_COVPLETE_ENABLE
_RX_AREA_4_COVPLETE_ENABLE
_RX_AREA_3_COVPLETE_ENABLE
_RX_AREA_2_COVPLETE_ENABLE
_RX_AREA_1_COVPLETE_ENABLE
_RX_AREA_0_COVPLETE_ENABLE
_TX_DVA_COVPLETE_ENABLE
_RX_DVA_COVPLETE_ENABLE
_TX_I NTERRUPTS_DI SABLE
_RX_I NTERRUPTS_DI SABLE

_RX_FI FO_| NTERRUPT_ENABLE

_TX_FI FO_I NTERRUPT_ENABLE

_RECEI VE_FI FO_| NTERRUPT_MASK

ne
ne
ne
ne
ne
ne
ne
ne

_MEMORY_AREA_7
_MEMORY_AREA 6

_MEMORY_AREA 5

_MEMORY_AREA 4

_MEMORY_AREA_3

_MEMORY_AREA 2

_MEMORY_AREA_1

_MEMORY_AREA_0

_FI FO_UNDERFLOW ENABLE

_FI FO_EMPTY_ENABLE

_FI FO_EXCEEDS_THRESHOLD_ENABLE
_FI FO_OVERFLOW ENABLE

#define _TRANSM T_FI FO_| NTERRUPT_MASK
/1 #def i
/1 #def i
/1 #def i
/1 #def i
/1 #def i
/1 #def i

ne
ne
ne
ne
ne
ne

_MEMORY_AREA_7
_MEMORY_AREA_6
_MEMORY_AREA 5
_MEMORY_AREA_4
_MEMORY_AREA_3
_MEMORY_AREA 2

170

0x000000F0
0x0000000F
0b0001
0b0010
0b0100
0b1000
0x000040
Ox1
0x0
0x000044
0x100000
0x080000
0x040000
0x020000
0x010000
0x008000
0x004000
0x002000
0x001000
0x000800
0x000400
0x000200
0x000100
0x000080
0x000040
0x000020
0x000010
0x000008
0x000004
OxFFFFFFF5
OxFFFFFFFA
0x000002
0x000001
0x000048
O0xF0000000
0x0F000000
0x00F00000
0x000F0000
0x0000F000
0x00000F00
0x000000FO0
0x0000000F
0b0001
0b0010
0b0100
0b1000
0x00004C
0xF0000000
0x0F000000
0x00F00000
0x000F0000
0x0000F000
0x00000F00

/[#def i
/[#def i
/[#def i
/| #def i
/| #def i
/| #def i

#def
#def
#def
#def
#def i
#def
#def
#def
#def
#def

#def i

/131

#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
nmul t
#def
#def
#def
#def

/1 0x00400: 0x0004F0

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
16
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne

_MEMORY_AREA 1
_MEMORY_AREA_0

_FI FO_UNDERFLOW ENABLE
_FI FO_EMPTY_ENABLE

_FI FO_EXCEEDS_THRESHOLD ENABLE

_FI FO_OVERFLOW ENABLE

DI SCRETE_OUTPUT_CONTROL
~8 Bl T_OUTPUT_MODE_SELECT

DI SCRETE_OUTPUT _7_SELECTED
DI SCRETE_OUTPUT_6_SELECTED
_DI SCRETE_OUTPUT 5_SELECTED
_ DI SCRETE_OUTPUT _4_SELECTED
_ DI SCRETE_OUTPUT_3_SELECTED
DI SCRETE_OUTPUT_2_ SELECTED
DI SCRETE_OUTPUT_1_SELECTED
_ DI SCRETE_OUTPUT_0_SELECTED

_AUTO_DMA_CONTROL

Nunmber

_TX_MEMORY_AREA 0_TO 0

_TX_MEMORY_AREA 0_
_TX_MEMORY_AREA 0_
_TX_MEMORY_AREA 0_
_TX_MEMORY_AREA 0_
_TX_MEMORY_AREA 0_

0_

_TX_MEMORY_AREA
_TX_MEMORY_AREA 0_
_RX_MEMORY_AREA 0_TO 0
RX NENCRY AREA 0_
_RX_VEMORY_AREA |

g
C)C)O(DCDC)C
\l@U‘I-bOOI\JH

—4—1—“—14 —
CNC%C%C%C)C)
OO~ WN R

RX_MEMORY_AREA 0_TO_
RX_MEMORY_AREA 0_TO 7
_AUTO_COUNTERS_RELOAD

ple transfers automatically
_TX_AUTO DVA ENABLE
_RX_AUTO_DVA ENABLE
_TX_AUTO_DVA DI SABLE
_RX_AUTO_DVA DI SABLE

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

_RX_MEMORY_AREA 0_BLOCK_COUNT
_RX_MEMORY_AREA_1_BLOCK_COUNT
_RX_VEMORY_AREA_2_BLOCK_COUNT
_RX_MEMORY_AREA_3_BLOCK_COUNT
_RX_MEMORY_AREA_4_BLOCK_COUNT
“RX_VEMORY_AREA 5_BLOCK_COUNT
_RX_VEMORY_AREA_6_BLOCK_COUNT
_RX_MVEMORY_AREA_7_BLOCK_COUNT
_TX_MEMORY_AREA_0_BLOCK_COUNT
_TX_MEMORY_AREA_1_BLOCK_COUNT
_TX_MEMORY_AREA_2_BLOCK_COUNT
_TX_MEMORY_AREA_3_BLOCK_COUNT
~TX_MEMORY_AREA_4_BLOCK_COUNT

171

0b0001
0b0010
0b0100

0x000050
0x100
0x080
0x040
0x020
0x010
0x008
0x004
0x002
0x001

0x0000

of 64-bit words to be transfered

0x0

0x080
0x100
0x180
0x200
0x280
0x300
0x038
0x0

0x008
0x010
0x018
0x020
0x028
0x030
0x038
0x004

0x006
0x005

OXFFFFFFFD

OXFFFFFFFE

AUTO DVA BLOCK COUNT

0x000400
0x000410
0x000420
0x000430
0x000440
0x000450
0x000460
0x000470
0x000480
0x000490
0x0004A0
0x0004B0
0x0004C0

0x000000F0
0x0000000F

0b1000

94

/1 Al ows

#defi ne _TX MEMORY_AREA 5 BLOCK COUNT 0x0004D0

#defi ne _TX MEMORY_AREA 6 BLOCK COUNT 0x0004EQ0

#define _TX MEMORY_AREA 7 BLOCK COUNT 0x0004F0

/1 9:0 Block Count: Nunber of DVA bl ocks to be transfered before a DVA
Bl ock Conplete int

/1 0X000500: 0X0O005F0 AUTO DVA GROUP COUNT

#define _RX_MEMORY_AREA 0_GROUP_COUNT 0x000500
#define _RX_MEMORY_AREA_1_GROUP_COUNT 0x000510
#define _RX_MEMORY_AREA 2 GROUP_COUNT 0x000520
#define _RX_MEMORY_AREA_3_GROUP_COUNT 0x000530
#define _RX_MEMORY_AREA_4_GROUP_COUNT 0x000540
#define _RX_MEMORY_AREA_5_GROUP_COUNT 0x000550
#define _RX_MEMORY_AREA_6_GROUP_COUNT 0x000560
#define _RX_MEMORY_AREA_7_GROUP_COUNT 0x000570
#define _TX_MEMORY_AREA_0_GROUP_COUNT 0x000580
#define _TX_MEMORY_AREA_1_GROUP_COUNT 0x000590
#define _TX_MEMORY_AREA_2_GROUP_COUNT 0x0005A0
#define _TX_MEMORY_AREA_3_GROUP_COUNT 0x0005B0
#define _TX_MEMORY_AREA 4 GROUP_COUNT 0x0005C0
#define _TX_MEMORY_AREA 5_GROUP_COUNT 0x0005D0
#define _TX_MEMORY_AREA_6_GROUP_COUNT 0x0005E0
#define _TX_MEMORY_AREA_7_GROUP_COUNT 0x0005F0

/1 4:0 Block Count: Number of DMA groups to be transfered before the
initial
/1 DVA address is rel oaded

/1 0X000800: 0X0008F0O AUTO DVA ADDRESS

#defi ne _RX_MEMORY_AREA 0_ADDRESS 0x000800

#defi ne _RX_MEMORY_AREA 1 ADDRESS 0x000810

#defi ne _RX_MEMORY_AREA 2 ADDRESS 0x000820

#defi ne _RX MEMORY_AREA 3 ADDRESS 0x000830

#defi ne _RX_MEMORY_AREA 4 ADDRESS 0x000840

#defi ne _RX_MEMORY_AREA 5 ADDRESS 0x000850

#defi ne _RX_MEMORY_AREA 6_ADDRESS 0x000860

#defi ne _RX_MEMORY_AREA 7_ADDRESS 0x000870

#defi ne _TX MEMORY_AREA 0_ADDRESS 0x000880

#defi ne _TX MEMORY_AREA 1 ADDRESS 0x000890
#define _TX MEMORY_AREA 2 ADDRESS 0x0008A0
#define _TX_MEMORY_AREA 3 ADDRESS 0x0008B0

#defi ne _TX MEMORY_AREA 4 ADDRESS 0x0008C0

#defi ne _TX MEMORY_AREA 5 ADDRESS 0x0008D0

#defi ne _TX MEMORY_AREA 6 ADDRESS 0x0008EOD
#define _TX MEMORY_AREA 7 ADDRESS 0x0008F0

/1 31:0 Starting address in nmenory to begin DVA transfer
#defi ne _RECEI VE_CONTRCL 0x001100
/1 _ RX_CHANNEL_ORGANI ZATI ON

#def i ne 8 CHANNELS 0x0000
#defi ne _2_POLYPHASE _CHANNELS 0x4000
#defi ne _4 _POLYPHASE_CHANNELS 0x8000
#defi ne _8_POLYPHASE CHANNELS 0xC000
#def i ne _BI T_REQ STERS ENABLE 0x2000
#def i ne _FI FO FLUSH 0x1000
#def i ne _RX_HEADER _ENABLE 0x0400

172

#def i

sel ect ed

#def i

ne

ne

not set

#def
#def
#def
#def
#def
#def
#def
#def
#def
recei
#def

ne
ne
ne
ne
ne
ne
ne
ne
ne
ver
ne

_RX_MASTER_ENABLE
_POLYPHSE_SEQUENCI AL_DATA

_RX_MEMORY_AREA
__VEMORY_AREAS
__VEMORY_AREAS
__MVEMORY_AREAS
__MEMORY_AREAS
__VEMORY_AREAS
__VEMORY_AREAS

_8_RX_MEMORY_AREAS

_RX_Cl RCUI TRY_ENABLE

circuitry

RX_ENABLE

| | | | ||
QS‘EQQQQ

Shoul d be enabled after initialization

#def

#def
#def
#def
#def
#def

ne

ne
ne
ne
ne
ne

_RX_DI SABLE

0x0200 /1 Must be
0x0100 /1 Usually

0x0
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0002 /1 Enabl es

0x0001 11

OXFFFFFFFE

_MANUAL_DMA_RX_MEMORY_SELECT 0x001104

_MANUAL_RX_NMEMORY_SELECT
_START_MANUAL_DMA_RX

_RX_DI RECT_FI FO_ACCESS

_RX_MEMORY_AREA_SELECT

/1 OxO00X = Menory area to be used for transfer

#def i
#def i

#def i

ne
ne

ne

_RECEI VE_TI M NG_CONTROL
_TI M NG_CONTROL_DI SABLE

_RECEI VE_CLOCK_RATE

93MHz=92999998

/I Regi sters of pages 67-73 are not used.

#def
#def
#def
#def
#def
#def
#def
#def

ne
ne
ne
ne
ne
ne
ne
ne

_RX_MEMORY_AREA_0_ORGANI ZATI ON
_RX_MEMORY_AREA_1_ORGANI ZATI ON
_RX_MEMORY_AREA_2_ORGANI ZATI ON
_RX_MEMORY_AREA_3_ORGANI ZATI ON
_RX_MEMORY_AREA_4_ORGANI ZATI ON
_RX_MEMORY_AREA_5_ORGANI ZATI ON
“RX_MVEMORY_AREA_6_ORGANI ZATI ON
“RX_MEMORY_AREA_7_ORGANI ZATI ON

[/ For the above registers, the follow ng fields

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

_RX_END_CHANNEL_0
_RX_END_CHANNEL_1
_RX_END_CHANNEL_2
_RX_END_CHANNEL_3
_RX_END_CHANNEL_4
_RX_END_CHANNEL_5
_RX_END_CHANNEL_6
_RX_END_CHANNEL_7
_RX_START_CHANNEL_0
_RX_START_CHANNEL_1
_RX_START_CHANNEL_2
_RX_START_CHANNEL_3
_RX_START_CHANNEL_4
_RX_START_CHANNEL_5

173

0x100
0x010
0x008
0X007

(0-7)

0x001108
0x0

0x001128 /'l For

0x001300
0x001310
0x001320
0x001330
0x001340
0x001350
0x001360
0x001370

are used
0x0
0x1000
0x2000
0x3000
0x4000
0x5000
0x6000
0x7000
0x0
0x0100
0x0200
0x0300
0x0400
0x0500

#defi ne _RX _START_CHANNEL 6 0x0600

#defi ne _RX_START_CHANNEL 7 0x0700

#defi ne _RX_CHANNEL_0_DI RECTED 0x0001

#defi ne _RX_CHANNEL_1 DI RECTED 0x0002

#def i ne _RX_CHANNEL_2_DI RECTED 0x0004

#defi ne _RX_CHANNEL_3_DI RECTED 0x0008

#defi ne _RX_CHANNEL_4_DI RECTED 0x0010

#defi ne _RX_CHANNEL_5_ DI RECTED 0x0020

#defi ne _RX_CHANNEL_6_DI RECTED 0x0040

#def i ne _RX_CHANNEL_7_DI RECTED 0x0080

#defi ne _RX_MEMORY_AREA 0_PO NTER 0x001400

#defi ne _RX_MEMORY_AREA 1 PO NTER 0x001410

#defi ne _RX_MEMORY_AREA 2 PO NTER 0x001420

#defi ne _RX_MEMORY_AREA 3 PO NTER 0x001430

#defi ne _RX_MEMORY_AREA 4 PO NTER 0x001440

#defi ne _RX_MEMORY_AREA 5 PO NTER 0x001450

#defi ne _RX_MEMORY_AREA 6 PO NTER 0x001460

#defi ne _RX_MEMORY_AREA 7_ PO NTER 0x001470

/1 For the above registers, the follow ng val ues nust be entered:
/1 30:16 Last address of the designated nenory area in relation
/1 to the starting address of the Rx nenory bl ock (64-bit
| ongwor ds)

/1 0:14 The first address of the designated nmenory area (as
above)

#define _RX MEMORY_AREA 0 LIMTS 0x001500

#define _RX MEMORY AREA 1 LIMTS 0x001510

#define _RX_MEMORY_AREA 2 LIMTS 0x001520

#define _RX_ MEMORY_AREA 3 LIMTS 0x001530

#define _RX_ MEMORY_AREA 4 LIMTS 0x001540

#define _RX MEMORY _AREA 5 LIMTS 0x001550

#define _RX MEMORY_AREA 6 LIMTS 0x001560

#define _RX_MEMORY_AREA 7 _LIMTS 0x001570

/I For the above registers, the follow ng val ues nust be entered:
/1 30:16 Si ze of the designated nenory area (64-bit | ongwords)

/1 0:14 Threshol d at which interrupt will be generated
#define _RX_MEMORY_AREA 0_PTR_STATUS 0x001800
#define _RX_MEMORY_AREA 1_PTR_STATUS 0x001810
#define _RX_MEMORY_AREA 2_PTR _STATUS 0x001820
#define _RX_MEMORY_AREA 3_PTR_STATUS 0x001830
#defi ne _RX_ MEMORY_AREA 4_PTR _STATUS 0x001840
#define _RX_MEMORY_AREA 5_PTR_STATUS 0x001850
#define _RX_MEMORY_AREA 6_PTR_STATUS 0x001860
#define _RX_MEMORY_AREA 7_PTR_STATUS 0x001870

/1 For the above registers, the follow ng val ues nmust be entered:

/1 0:14 Next address to be read fromthe designated FIFO
Menory area

/1 PROVI DED FOR DEBUG PURPCSES

#def i ne _RECEI VE_FI FO__STATUS 0x001900
//#define _MEMORY_AREA 7 0xF0000000
//#define _MEMORY AREA 6 0x0F000000

174

/1 #define _NMEMORY_AREA 5

[/ #define _MEMORY_AREA 4

[/ #define _MEMORY_AREA 3

/| #define _MEMORY_AREA 2

/1 #define _NMEMORY_AREA 1

/I #define _NMEMORY_AREA O

/I #define _FI FO_UNDERFLOW

/| #define _FI FO EMPTY

[/ #define _FI FO EXCEEDS THRESHOLD
//#define _FlI FO OVERFLOW

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne _RX_MEMORY_AREA 0 WR_PTR_STATUS
ne _RX_MEMORY_AREA 1 WR_PTR_STATUS
ne _RX_MEMORY_AREA 2 WR_PTR_STATUS
ne _RX_MEMORY_AREA 3_WR_PTR_STATUS
ne _RX_MEMORY_AREA 4_WR_PTR_STATUS
ne _RX_MEMORY_AREA 5 WR_PTR_STATUS
ne _RX_MEMORY_AREA 6_WR_PTR_STATUS

ne _RX_MEMORY_AREA_7_WR_PTR_STATUS

/1 For the above registers, the follow ng val ues
14 Next address of the RX Menory to be witten.
/1 PROVI DED FOR DEBUG PURPCSES

/1 O:

0x00F00000
0x000F0000
0x0000F000
0x00000F00
0x000000F0
0x0000000F
0b0001

0b0010

0b0100

0b1000

0x001A00
0x001A10
0x001A20
0x001A30
0x001A40
0x001A50
0x001A60
0x001A70

must

be entered:

#defi ne _RX_MEMORY_AREA 0_FI FO_COUNT 0x001B00

#define _RX_MEMORY_AREA 1 FlI FO_COUNT 0x001B10

#define _RX_MEMORY_AREA 2 FlI FO_COUNT 0x001B20

#defi ne _RX MEMORY_AREA 3 FlI FO_COUNT 0x001B30

#defi ne _RX MEMORY_AREA 4 Fl FO_COUNT 0x001B40

#define _RX_MEMORY_AREA 5 FlI FO_COUNT 0x001B50

#define _RX_MEMORY_AREA 6_FI FO_COUNT 0x001B60

#defi ne _RX_MEMORY_AREA 7_FI FO_COUNT 0x001B70

/1 For the above registers, the follow ng values nmust be entered:

/1 0:14 Amount of data remaining in the designated Menory
Area FIFO

#defi ne _TRANSM T_CONTRCL 0x002100

#defi ne _TX Bl T_REGQ STERS_ENABLE 0x2000

#defi ne _TX_FI FO_FLUSH 0x1000
#define _TX FI FO_ENABLE Ox FFFFEFFF

#define _TX MASTER SYNC ENABLE 0x0400 /1 Must be
set ???

#defi ne _TX_ MASTER _ENABLE 0x0200 /1 Must be
sel ect ed

#defi ne _1 TX MEMORY_AREA 0x0

#def i ne _2_TX_MEMORY_AREAS 0x0010

#defi ne _3_TX_MEMORY_AREAS 0x0020

#defi ne _4 TX_MEMORY_AREAS 0x0030

#defi ne _5_TX_ MEMORY_AREAS 0x0040

#defi ne _6_TX MEMORY_AREAS 0x0050

#defi ne _7_TX_MEMORY_AREAS 0x0060

#defi ne _8_TX_ MEMORY_AREAS 0x0070

#defi ne _TX_Cl RCU TRY_ENABLE 0x0002 /1 Enabl es
transmitter circuitry

#define _TX_ENABLE 0x0001

Shoul d be enabled after initialization

175

#def i

#def i
#def i
#def i
#def i

/1 Ox00X = Menory area to be used for transfer

#def i
#def i

#def

ne

ne
ne
ne
ne

ne
ne

ne

_TX_DI SABLE

OXFFFFFFFE

_MANUAL_DMA_TX_MEMORY_SELECT 0x002104

_TX_ENDI AN_SELECT
_DI RECT_TX_MEMORY_ACCESS
_TX_MEMORY_AREA_SELECT

_TX_TI' M NG_CONTROL
_TX_TI M NG_CONTROL_DI SABLE

_TX_CLOCK_RATE

93MHz=92999998

#defi ne _PRN_CONTROL
/118:4 PRN Seed val ue

#def
#def
#def
#def

#def i

/1 31:
/1 00:

#def i

/1 31:
/1 00:

ne
ne
ne
ne

_4_SAVPLES_PER_SYMBOL
"~ 2 SAMPLES_PER_SYMBOL
~1_SAMPLE_PER_SYMBOL
_PRN_CODE_TX_ENABLE

//1f O FIFOdata is transmtted

ne
16
15

ne
16
15

_PRN_ZERO | Q VALUE

Q
|

_PRN_ONE_I Q VALUE

Q
|

/I Regi sters of pages 84-88 are not used.

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/I For the above registers,

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

_TX_MEMORY_AREA 0 _ORGANI ZATI ON
“TX_MEMORY_AREA_1_ORGANI ZATI ON
_TX_MEMORY_AREA_2_ORGANI ZATI ON
_TX_MEMORY_AREA_3_ORGANI ZATI ON
“TX_MEMORY_AREA_4_ORGANI ZATI ON
“TX_MEMORY_AREA_5_ORGANI ZATI ON
_TX_MEMORY_AREA_6_ORGANI ZATI ON
_TX_MEMORY_AREA_7_ORGANI ZATI ON

_TX_END_CHANNEL_O
_TX_END_CHANNEL_1
“TX_END_CHANNEL_2
_TX_END_CHANNEL_3
_TX_END_CHANNEL_4
_TX_END_CHANNEL_5
_TX_END_CHANNEL_6
“TX_END_CHANNEL_7
_TX_START_CHANNEL_0
_TX_START_CHANNEL_1
_TX_START_CHANNEL_2
_TX_START_CHANNEL_3
_TX_START_CHANNEL 4
_TX_START_CHANNEL_5
_TX_START_CHANNEL_6

176

the follow ng fields

0x100
0x008
0x007

(0-7)

0x002108
0x0

0x002128 /'l For

0x00211C

0x8
Ox4
0x0
0Ox1

0x002120

0x002124

0x002300
0x002310
0x002320
0x002330
0x002340
0x002350
0x002360
0x002370

are used
0x0
0x1000
0x2000
0x3000
0x4000
0x5000
0x6000
0x7000
0x0
0x0100
0x0200
0x0300
0x0400
0x0500
0x0600

#define _TX START_CHANNEL_7 0x0700
/1 The val ues bel ow can be ORed to allow nultiple channels

#defi ne _TX CHANNEL_O_DI RECTED 0x0001

#defi ne _TX CHANNEL_1 DI RECTED 0x0002

#def i ne _TX CHANNEL_2 DI RECTED 0x0004

#defi ne _TX_CHANNEL_3_DI RECTED 0x0008

#defi ne _TX_CHANNEL_4_ DI RECTED 0x0010

#defi ne _TX CHANNEL_5 DI RECTED 0x0020

#defi ne _TX CHANNEL_6_DI RECTED 0x0040

#def i ne _TX _CHANNEL_7_DI RECTED 0x0080

#define _TX MEMORY_AREA 0_PO NTER 0x002400

#define _TX MEMORY_AREA 1 PO NTER 0x002410

#define _TX MEMORY_AREA 2 PO NTER 0x002420

#define _TX MEMORY_AREA 3 PO NTER 0x002430

#define _TX MEMORY_AREA 4 PO NTER 0x002440

#define _TX MEMORY_AREA 5 PO NTER 0x002450

#defi ne _TX MEMORY_AREA 6 PO NTER 0x002460

#define _TX MEMORY_AREA 7_ PO NTER 0x002470

/1 For the above registers, the follow ng val ues nust be entered:
/1 30:16 Last address of the designated nenory area in relation
/1 to the starting address of the Rx nenory bl ock (64-bit
| ongwor ds)

/1 0:14 The first address of the designated nmenory area (as
above)

#define _TX MEMORY _AREA O LIMTS 0x002500

#define _TX MEMORY AREA 1 LIMTS 0x002510

#define _TX MEMORY_AREA 2 LIMTS 0x002520

#define _TX MEMORY_AREA 3 LIMTS 0x002530

#define _TX MEMORY_AREA 4 LIMTS 0x002540

#define _TX MEMORY AREA 5 LIMTS 0x002550

#define _TX MEMORY _AREA 6 LIMTS 0x002560

#define _TX MEMORY_AREA 7 _LIMTS 0x002570

/I For the above registers, the follow ng val ues nust be entered:
/1 30:16 Si ze of the designated nenory area (64-bit | ongwords)

/1 0:14 Threshol d at which interrupt will be generated
#define _TX_MEMORY_AREA 0_PTR_STATUS 0x002800
#define _TX_MEMORY_AREA 1_PTR_STATUS 0x002810
#define _TX MEMORY_AREA 2_PTR _STATUS 0x002820
#define _TX MEMORY_AREA 3_PTR _STATUS 0x002830
#define _TX MEMORY_AREA 4_PTR _STATUS 0x002840
#define _TX_MEMORY_AREA 5_PTR_STATUS 0x002850
#define _TX_MEMORY_AREA 6_PTR_STATUS 0x002860
#define _TX MEMORY_AREA 7_PTR _STATUS 0x002870

/1 For the above registers, the follow ng val ues nmust be entered:

/1 0:14 Next address to be read fromthe designated FIFO
Menory area

/1 PROVI DED FOR DEBUG PURPCSES

#def i ne _TRANSM T_FI FO__STATUS 0x002900
//#define _MEMORY_AREA 7 0xF0000000
/1#define _MEMORY_AREA 6 0x0F000000

177

//#define _MEMORY_AREA 5 0x00F00000

/1#define _MEMORY_AREA 4 0x000F0000
/1#define _MEMORY_AREA 3 0x0000F000
/1#define _MEMORY_AREA 2 0x00000F00
/1#define _MEMORY_AREA 1 0x000000F0
/1#define _MEMORY_AREA O 0x0000000F
/1#define _FI FO UNDERFLOW 0b0001
/1#define _FIFO EMPTY 0b0010
/1#define _FI FO EXCEEDS THRESHOLD 0b0100

/1#define _FI FO OVERFLOW 0b1000
#define _TX_MEMORY_AREA 0_RD PTR _STATUS 0x002A00

#define _TX_MEMORY_AREA 1_RD PTR_STATUS 0x002A10

#define _TX_MEMORY_AREA 2_RD PTR_STATUS 0x002A20

#define _TX_MEMORY_AREA 3_RD PTR _STATUS 0x002A30

#define _TX_MEMORY_AREA 4_RD PTR_STATUS 0x002A40

#define _TX_MEMORY_AREA 5_RD PTR_STATUS 0x002A50

#define _TX_MEMORY_AREA 6_RD PTR_STATUS 0x002A60

#define _TX_MEMORY_AREA 7 _RD PTR_STATUS 0x002A70

/1 For the above registers, the follow ng val ues nust be entered:
/1 0:14 Next address of the TX Menory to be READ.
/1 PROVI DED FOR DEBUG PURPCSES

#define _TX MEMORY_AREA O_FI FO_COUNT 0x002B00
#define _TX_MEMORY_AREA 1_FI FO_COUNT 0x002B10
#define _TX_MEMORY_AREA 2_FI FO_COUNT 0x002B20
#define _TX _MEMORY_AREA 3_FI FO_COUNT 0x002B30
#define _TX _MEMORY_AREA 4 FI FO_COUNT 0x002B40
#define _TX MEMORY_AREA 5 FlI FO_COUNT 0x002B50
#define _TX_MEMORY_AREA 6_FI FO_COUNT 0x002B60
#define _TX_MEMORY_AREA 7_FI FO_COUNT 0x002B70

/1 For the above registers, the follow ng values nmust be entered:
/1 0:14 Amount of data remaining in the designated Menory
Area FIFO

#define _DI THER_NO SE_POANER CONTROL 0x008000

/17:0 Noise power from-90dBm (0x0) to -30 dBm (OxFF)
#def i ne _ATTENUATOR_POWER_CONTRCL 0x008004

// Regi sters of pages 95-100 are not used

PMCRADIOI.H

/1 Red River Engineering

/1lnclude file for use with WaveRunner Milti-Card Library
/1 PN. SRC-905-008- ROO (August 16, 2001)

/1 Author - Patrick Jennings

#i f ndef PMCRADIO __H
#define PMCRADI Ol __H

#i fdef _ cpl uspl us
178

extern "C" {
#endi f

typedef struct {
i nt NunBuffers;
unsi gned | ong Buf Si zeByt es;
unsi gned | ong Err St at us;
unsi gned | ong v_dmap[32];
unsi gned | ong p_dmap[32];

} s_DMAConf ;

typedef struct {
i nt DevNum // Devi ce Nunmber of the Radio
} s_PMCRadi o;

/*
s_PMCRadi o Radi 0o0;
Radi 00. DevNum = 0;

OpenPMCRadi o(&Radi 00) ;
Cl osePMCRadi o(&Radi 00) ;
*/

FEEEEEEEr bbb bbb bbb rr e rr e rrrry
IRy

11 PROTYPES

FHEEEEEE sy
1t

Pr ot ot ype i nt OpenWaveRunner (voi d);

Functi on OpenWaveRunner instantiates a Wave Wal ker radio as a
W ndows devi ce and

menory maps its physical PCl space to a local nenory inage. The |oca
nmenory inage is

used to access the radio via the Wave Wal ker nenory nap described in
t he Wave \Wal ker Hardwar e Reference Manual

OpenWaveRunner nust be call ed before any of the Wave Wal ker library
functions can be used.

Cl oseVaveRunner mnust be called prior to exiting a programthat has
cal | ed OpenWaveRunner

to prevent nenory | eaks.

Ret urn Val ues
0 Successful open and nenory nappi ng of Wave WAl ker Radi o

-1 Wave \Wal ker device not accessible

-2 CS unable to menory nmap device

fmmmmmmmmmomomeg
i nt OpenWaveRunner () ; /1 Opens a

WaveRunner and maps it
i nt OpenMul ti WaveRunner (i nt i Devi ceNunj;
i nt OpenPMCRadi o(s_PMCRadi o * PMCRadi o) ;

Pr ot ot ype i nt C oseWaveRunner (voi d);

Functi on Unmaps and deal | ocates system nmenory assigned to a
Wave wal ker devi ce.

This function nust be called prior to exiting any programthat has

i ssued an

OpenWaveRunner command. Wave Wal ker library functions can no | onger be
used after

this function is executed unl ess a new CpenWaveRunner conmand i s

i ssued.

Ret urn Val ues
0 Successful operation

-1 Unabl e to deall ocate nenory (systemfault)
ey
int C oseWaveRunner(); /1C oses and

del etes a WaveRunner
int CoseMiltiWaveRunner (int iDeviceNum;
i nt C osePMCRadi o(s_PMCRadi o * PMCRadi 0) ;

Pr ot ot ype i nt Get MenPoi nter(unsigned |ong *Menptr);

Functi on CGet MenPoi nter returns a pointer to the Wave Wl ker

| ocal nenory inmage. This pointer can be used to access any location in
t he Wave Wl ker nenory map. The user mnust pass the pointer by
reference by calling as foll ows:

unsi gned long *M/WaveRunnerptr; /1 User defined pointer to
Wave Wl ker
Get MenPoi nt er ((unsi gned long *) &WWaveRunnerptr); /lCall to

initialize pointer

Once initialized the pointer can be used to access Wave \Wal ker as
fol | ows:

Wite to the transmtter real data FIFO

#def i ne TX_REAL_OFFSET 0x1000
*(MyWaveRunner ptr + TX REAL_OFFSET/ 4) = 0x12345678;

Read from Wave Wl ker status register

#def i ne STATUS REG OFFSET 0x058C
data = *(MyWaveRunner ptr + STATUS REG OFFSET/ 4);

note: Wave Wl ker nmenory map addresses nust be divided by 4 when using
t he pointer

returned by GetMenPointer. The division by 4 translates the byte

of fset nenory map

l[istings to 32-bit (4 byte) word pointer increnents. This is NOT
required for the

Wite and Read Wave Wl ker functions found el sewhere in this library.

Ret urn Val ues

180

0 Successful operation
-1 Unsuccessful operation

i nt Get MenPoi nter (unsi gned | ong* ptr); /1 Provides a pointer to
the virtual map of the radio

int GetMiltiMenPointer(int iDeviceNum unsigned |ong* ptr);

i nt Get PMCRadi oMenPoi nter (s_PMCRadi o * , unsigned | ong* ptr);

Pr ot ot ype int WiteWveRunner (unsi gned | ong AddressOffset, unsigned
| ong Data);

Functi on The WiteWaveRunner function wites the data val ue
passed in

variable Data to the Wave WAl ker devi ce nenory mapped regi ster

i ndi cated by

variabl e AddressOifset. AddressOfset is any valid Wave WAl ker nenory
map address.

Pl ease see the Wave Wl ker Hardware Reference Manual for a listing of
valid nenory

map of fset addresses.

Ret urn Val ues
0 Successful operation
-1 Unsuccessful operation

int WiteWaveRunner (unsi gned | ong AddressOffset, unsigned | ong Data);
/I Wites

int WiteMiltiWaveRunner(int iDeviceNum unsigned |ong AddressO fset,
unsi gned | ong Data);

int WitePMCRadi o(s_PMCRadi o * PMCRadi o, unsigned | ong AddressOffset,
unsi gned long Data); //Wites

Pr ot ot ype i nt ReadWaveRunner (unsi gned | ong AddressOffset, unsigned
| ong *Data);

Functi on ReadWaveRunner returns the value | ocated at
AddressOffset to the variabl e Data passed by reference. AddressOfset
is any valid Wave Wal ker nmenory map address.

Calling form

unsi gned | ong address, data; /1 User defined
vari abl es

ReadWaveRunner (addr ess, &data); /1 Call to read
dat a

Data val ue returned by reference.

Ret urn Val ues
0 Successful operation

181

-1 Unsuccessful operation

i nt ReadWaveRunner (unsi gned | ong AddressOf fset, unsigned | ong *Data);
/| Reads by ref

i nt ReadMul ti WaveRunner (i nt i Devi ceNum unsigned | ong AddressOf f set,
unsi gned | ong *Data);

i nt ReadPMCRadi o(s_PMCRadi o * PMCRadi o, unsigned | ong AddressOf f set,
unsi gned long *Data); //Reads by ref

i nt ReadWRConfi gSpace(unsigned | ong nOfset, char *PCl config, unsigned
| ong nBytes);

i nt ReadMul ti WRConfi gSpace(int iDeviceNum unsigned [ong nOifset, char
*PCl config, unsigned | ong nBytes)

i nt ReadWRConfi gSpace(unsigned | ong nOffset, char *PCl config, unsigned
| ong nBytes);

i nt ReadMul ti WRConfi gSpace(int i DeviceNum unsigned |ong nOfset, char
*PCl config, unsigned |ong nBytes);

i nt ReadPMCRadi oConfi gSpace(s_PMCRadi o * PMCRadi o, unsi gned | ong

ncf fset, char *PClconfig, unsigned |ong nBytes);

int WiteWRConfigSpace(unsigned [ong nOffset, char *PCl config, unsigned
| ong nByt es)

int WiteMltiWRConfigSpace(int iDeviceNum unsigned |ong nOfset, char
*PCl confi g, unsigned | ong nBytes)

int WiteWRConfigSpace(unsigned |ong nOfset, char *PClconfig, unsigned
| ong nBytes);

int WiteMiltiWRConfigSpace(int iDeviceNum unsigned |ong nOfset, char
*PCl config, unsigned |ong nBytes);

int WitePMCRadi oConfi gSpace(s_PMCRadi o * PMCRadi o, unsi gned | ong

nCOf fset, char *PClconfig, unsigned |ong nBytes);

Pr ot ot ype int GetFirnRev(unsigned | ong *date);

Functi on CetFirmRev returns the contents of the Wave Wl ker
firmvare revision

register. A read of the firnnare revision register can be used to
qui ckly verify

182

t he conmuni cation path to the Wave Wal ker radio. The firmwvare revision
date is a
hexadeci mal val ue passed by reference.

Call'ing form

unsi gned | ong dat e; /'l User defined variable for
the revision date

CGet Fi rmRev(&dat e) ; /1 Function call to wite firmnare
revision date

The variable date is updated with the contents of the Wave Wl ker
firmvare revision

register (32 bit Hex constant, for exanple 0x09171999, note the date
only nmakes sense

when vi ewed as an unsi gned | ong hexadeci mal nunber) A date of all 0's
i ndi cates an

access problem

Ret urn Val ues

0 Successful operation

-1 Unsuccessful operation

e
int GetFirnRev(unsigned [ong * date); /1 Shows t he

Fi rmnvare revi son
int GetMultiFirnRev(int iDeviceNum unsigned |ong * date);
i nt Get PMCRadi oFi rnRev(s_PMCRadi o * PMCRadi o, unsigned |ong * date);

Pr ot ot ype i nt ConfigWaveRunner (char Confi gFnane [80]);

Functi on This function is used to | oad Wave \Wal ker
configuration files created
usi ng the Wavefornmer configuration tool. The Wavefornmer tool creates

two sets of three

configuration files. One set has a ".h" extension, the other has a
".txt" extension.

The ConfigWaveRunner function indirectly uses the ".h" versions of
these files.

Indirectly neans that the filenane passed to the function as

Confi gFnane contains a |ist

of the .h files to be uploaded. For exanple consider a file naned
"Confi gExanpl e.txt".

The file is a text file with three entries as foll ows:

bdinit.h
txinit.h
rxinit.h
(note the User may nodify the file nanmes)

183

The cal ling sequence for ConfigWaveRunner using the exanple file is:
Conf i gWaveRunner (" Confi gExanpl e. txt");

The function opens the pointer file "ConfigExanple.txt" to find the
three configuration

file names it contains. The contents of the three .h files are

aut omatical ly upl oaded

to the Wave Wl ker radio.

Note: The configuration pointer file and its ".h" files nust all be
collocated in a
wor ki ng directory or path recognized by the User application program

Ret urn Val ues

0 Successful operation

-1 Unable to find configuration pointer file

-2 Unable to find one or nore of the ".h" files
-3 System unabl e to comunicate with Radio

i nt ConfigWaveRunner (char ConfigFnane [80]); //Configs a WaveRunner
fromthe Excel too

i nt ConfigMiltiWwveRunner (int iDeviceNum char ConfigFnane [80]);

i nt ConfigPMCRadi o (s_PMCRadi o * PMCRadi o, char ConfigFnanme [80]);
/1 Configs a WaveRunner fromthe Excel too

/1 void WaveRunner | sr(unsi gned | ong st at us)

/1 WaveRunnerlsr is the entry point for any interrupt generated by a
WaveRunner

/1 device. This function nmust always be included in any program that
uses the

/1 \Wave Wl ker wi ndows |ibrary. Uncomment and nove this function into
your main code space

/1 and replace the printf statement with your own ISR code if you are
using interrupts.

i nt Get DVAPA(unsi gned | ong *wrdnapa, unsigned |ong *w dnava);

int GetMilti DMAPA(int iDeviceNum unsigned |ong *w dnapa, unsigned |ong
*wr dnmava) ;

i nt Get PMCRadi oDVAPA(s_PMCRadi o * PMCRadi o, unsigned | ong *w dnmapa,

unsi gned | ong *w dnava) ;

/1 unsigned | ong Retur nVaxDVABuUf ferSi ze()

/1

/1l Returns the size in bytes allocated for each M301 to do DVA
transfers

unsi gned | ong Get MaxDMABUf fer Si ze() ;
unsi gned | ong Get Mul ti MaxDMABUf fer Si ze(i nt i DeviceNun);
unsi gned | ong Get PMCRadi oMaxDMABUf f er Si ze(s_PMCRadi o * PMCRadi 0) ;

voi d Set upDMABUf fers(int i DevNum s_DVMAConf * DMAConfi g);
voi d Set upPMCRadi oDMABUf f er s(s_PMCRadi o * PMCRadi o, s_DMAConf *
DVAConfi Q) ;

voi d C oseDMABuUf fers(int iDevNum s_DMAConf * DMAConfi g);
voi d d osePMCRadi oBuf f ers(s_PMCRadi o * PMCRadi o, s_DMAConf *
DMAConfi Q) ;

voi d Set DMABuUf f er Si ze(i nt Pages);
voi d Set Mul ti DMABUf fer Si ze(int iDeviceNum int Pages);
voi d Set PMCRadi oDMABuUf f er Si ze(s_PMCRadi o * PMCRadi o, i nt Pages);

i nt Count 301s(void);
i nt Count PMCRadi os(voi d);

voi d PMCRadi ol sr(unsi gned | ong status);

voi d PMCRadi ol srO(unsi gned | ong status);
voi d PMCRadi ol sr1(unsi gned | ong status);
voi d PMCRadi ol sr2(unsi gned | ong status);
voi d PMCRadi ol sr3(unsi gned | ong status);
voi d PMCRadi ol sr4(unsi gned | ong status);
voi d PMCRadi ol sr5(unsi gned | ong status);
voi d PMCRadi ol sr6(unsi gned | ong status);
voi d PMCRadi ol sr7(unsi gned | ong status);

#i f ndef NO SR

/*

Move the following ines to your programif you are going

to use interrupts. Replace the printf statement with your | SR code.
*/

#i f ndef USERI SR
voi d WaveRunner | sr(unsi gned | ong stat us)

{

}
#endi f

PMCRadi ol srO(st at us);

#i f ndef USERI SRO
voi d PMCRadi ol srO(unsi gned | ong st at us)
{

}
#endi f

#i f ndef USERI SR1
voi d PMCRadi ol sr1(unsi gned | ong status)

{

}
#endi f

#i f ndef USERI SR2
voi d PMCRadi ol sr2(unsi gned | ong status)

{
185

}
#endi f

#i f ndef USERI SR3
voi d PMCRadi ol sr3(unsi gned | ong status)
{

}
#endi f

#i f ndef USERI SR4
voi d PMCRadi ol sr4(unsi gned | ong status)
{

}
#endi f

#i f ndef USERI SR5
voi d PMCRadi ol sr5(unsi gned | ong status)

{

#endi f

#i f ndef USERI SR6
voi d PMCRadi ol sr6(unsi gned | ong st at us)
{

}
#endi f

#i f ndef USERI SR7
voi d PMCRadi ol sr7(unsi gned | ong st at us)
{

}
#endi f

#endi f

char * Quer yRRProduct | D(voi d);

char * QueryLi bBuil dDat eString(void);

unsi gned | ong QueryDri ver XLi bVer si on(voi d);
unsi gned | ong QuerylLi bBui |l dDat e(voi d);

/*

start sync and end sync are used to coordinate gl obal variable use
outside the ISR routine, a start sync and end sync should frane
any statenent(s) that use(s) a global variable common to your ISR
*/

void startsync(void);

void startmul tisync(int iDeviceNum;
voi d endsync(void);

voi d endnul tisync(int iDeviceNum;

#i fdef _ cpl usplus
}

#endi f

#endi f
186

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

LIST OF REFERENCES

Enrico Buracchini, “The Software Radio Concept” IEEE Communications
Magazine, pp. 138-143, September 2000.

Joseph Mitola, “The Software Radio Architecture” IEEE Communications
Magazine, pp. 26-38, May 1995.

Proakis, J.G. and Manolakis, D.G., Digital Signal Processing: Principles,
Algorithms and Applications, 3d edition, Prentice Hall, New Jersey, 1996.
Reed, J.H., Software Radio: A Modern Approach to Radio Engineering,
Prentice Hall, New Jersey, 2002.

Mitola, J., Software Radio Architecture: Object-Oriented Approaches to
Wireless Systems Engineering, John Wiley & Sons, New York, 2002.
Shepherd G. and Krunglinski D., Programming with Microsoft Visual C++
.NET, Microsoft Press, Redmond, 2003.

Red River Engineering, Document No. REF-303-000-R01, WaveRunner
Plus Channel Surfer Channel Blaster Hardware Reference Manual, 2003.
Intersil, Document FN6013.1, I/SL5216 Four-Channel Programmable
Digital Down Converter Data Sheet, February 2002.

Intersil, Document FN6004.2, ISL5217 Quad Programmable Up Converter
Data Sheet, March 2003.

Capt. Nikolaos Apostolou, Hellenic Army, “Signal Synthesis With
Dynamically-Changing Power Spectral Density, in a Software Defined
Radio Transmitter”, Masters Thesis, September 2003, Naval Postgraduate

School, Monterey, California.

187

THIS PAGE INTENTIONALLY LEFT BLANK

188

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School

Monterey, California

Professor Jovan Lebaric
Naval Postgraduate School
Monterey, CA

Professor Curtis Schleher
Naval Postgraduate School
Monterey, CA

Professor Roberto Cristi
Naval Postgraduate School
Monterey, CA

Jan E. Tighe, CDR USN
Naval Information Warfare Activity
Washington, DC

Georgios Zafeiropoulos
53 Attalou Str. Kamatero
Athens 13451

Greece

189

THIS PAGE INTENTIONALLY LEFT BLANK

190

